www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Potenzreihen
Potenzreihen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Mo 19.01.2009
Autor: Palonina

Aufgabe
Sei $u: [mm] \IR \rightarrow \IR$ [/mm] zweimal differenzierbar, und es gelte $u ' ' = u$.

a) Ist $u$ um Null als Potenzreihe $u= [mm] \sum_{k=0}^{\infty}a_k x^k$ [/mm] darstellbar, so gilt

[mm] \hspace{1,5cm} [/mm] im Fall $u(0)=1, u ' (0)=0 :  [mm] a_k [/mm] = [mm] \left\{ \begin{array} 0 \mbox{0 \qquad für k ungerade}\\ \frac{1}{k!} \qquad \mbox{für k gerade}\end{array}\right.$ [/mm]

[mm] \hspace{1,5cm} [/mm] im Fall $u(0)=0, u ' (0)=1 :  [mm] a_k [/mm] = [mm] \left\{ \begin{array} 0\mbox{0 \qquad für k gerade}\\ \frac{1}{k!}\qquad \mbox{für k ungerade}\end{array}\right.$ [/mm]

b) Diese beiden Potenzreihen haben den Konvergenzradius [mm] $\infty$ [/mm] und sind Lösungen von $u ' ' = u$.

c) Sei $cosh(x):= [mm] \sum_{k=0}^{\infty}\frac{x^{2k}}{(2k)!}, [/mm] sinh(x):= [mm] \sum_{k=0}^{\infty}\frac{x^{2k+1}}{(2k+1)!}$. [/mm]

Es gilt $cosh' (x) = sinh (x), sinh'(x) = cosh(x)$.

d) Sei T irgendeine Lösung von $u ' ' = u$ mit [mm] $T(0)=\alpha, T'(0)=\beta$. [/mm] Dann folgt:


[mm] \hspace{1,5cm} [/mm] i) $f(x) = T(x) - [mm] \alpha \; [/mm] cosh (x) - [mm] \beta \;sinh [/mm] (x), g(x) = T'(x)- [mm] \alpha \;sinh [/mm] (x) [mm] -\beta \;cosh(x)$ [/mm] erfüllt $f' = g, g'=f $ und $f(0)=g(0)=0.$

[mm] \hspace{1,5cm} [/mm] ii) $F:= [mm] \frac{1}{2}(f+g)$ [/mm] erfüllt $F'=F, [mm] G=\frac{1}{2}(f-g)$ [/mm] erfüllt $G'=-G$.

[mm] \hspace{1,5cm} [/mm] iii) Es folgt $F=G=0$, damit $T(x)= [mm] \alpha \; [/mm] cosh(x) [mm] +\beta \;sinh(x)$. [/mm]

Hallo,

neue Woche - neues Glück - neuer Übungszettel!

Zunächst habe ich mich an Aufgabenteil a) versucht:

Ich habe versucht, mir die Darstellung der Taylorreihe klarzumachen. u ist zwar nur zweimal diffbar, aber wegen $u ' ' = u$ gilt dann doch [mm] $u^{(2k)}(0)= [/mm] u(0) = 1 $ und [mm] $u^{(2k+1)}(0)= [/mm] u'(0) = 0 $.

So erhalte ich die angegebenen [mm] a_k. [/mm]

zu b) habe ich leider keinen Ansatz.

zu c) Da die cosh(x) und sinh(x) in der Potenzreihendarstellung gegeben sind, soll ich die Ableitungen vermutlich nicht mit Hilfe von $cosh (x) = [mm] \frac{1}{2} (e^x +e^{-x})$ [/mm] beweisen.

cosh'(x)= [mm] \sum_{k=1}^{\infty}2k \frac{x^{2k-1}}{(2k)!} [/mm]
= [mm] \sum_{k=1}^{\infty} \frac{x^{2k-1}}{(2k-1)!}. [/mm] Durch Indexverschiebung erhalte ich sinh (x).

Muss ich noch begründen, warum ich die Potenzreihe gliedweise differenzieren darf?

Viele Grüße,
Palonina



        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 19.01.2009
Autor: MathePower

Hallo Palonina,

> Sei [mm]u: \IR \rightarrow \IR[/mm] zweimal differenzierbar, und es
> gelte [mm]u ' ' = u[/mm].
>  
> a) Ist [mm]u[/mm] um Null als Potenzreihe [mm]u= \sum_{k=0}^{\infty}a_k x^k[/mm]
> darstellbar, so gilt
>  
> [mm]\hspace{1,5cm}[/mm] im Fall [mm]u(0)=1, u ' (0)=0 : a_k = \left\{ \begin{array} 0 \mbox{0 \qquad für k ungerade}\\ \frac{1}{k!} \qquad \mbox{für k gerade}\end{array}\right.[/mm]
>  
> [mm]\hspace{1,5cm}[/mm] im Fall [mm]u(0)=0, u ' (0)=1 : a_k = \left\{ \begin{array} 0\mbox{0 \qquad für k gerade}\\ \frac{1}{k!}\qquad \mbox{für k ungerade}\end{array}\right.[/mm]
>  
> b) Diese beiden Potenzreihen haben den Konvergenzradius
> [mm]\infty[/mm] und sind Lösungen von [mm]u ' ' = u[/mm].
>  
> c) Sei [mm]cosh(x):= \sum_{k=0}^{\infty}\frac{x^{2k}}{(2k)!}, sinh(x):= \sum_{k=0}^{\infty}\frac{x^{2k+1}}{(2k+1)!}[/mm].
>
> Es gilt [mm]cosh' (x) = sinh (x), sinh'(x) = cosh(x)[/mm].
>  
> d) Sei T irgendeine Lösung von [mm]u ' ' = u[/mm] mit [mm]T(0)=\alpha, T'(0)=\beta[/mm].
> Dann folgt:
>  
>
> [mm]\hspace{1,5cm}[/mm] i) [mm]f(x) = T(x) - \alpha \; cosh (x) - \beta \;sinh (x), g(x) = T'(x)- \alpha \;sinh (x) -\beta \;cosh(x)[/mm]
> erfüllt [mm]f' = g, g'=f[/mm] und [mm]f(0)=g(0)=0.[/mm]
>  
> [mm]\hspace{1,5cm}[/mm] ii) [mm]F:= \frac{1}{2}(f+g)[/mm] erfüllt [mm]F'=F, G=\frac{1}{2}(f-g)[/mm]
> erfüllt [mm]G'=-G[/mm].
>  
> [mm]\hspace{1,5cm}[/mm] iii) Es folgt [mm]F=G=0[/mm], damit [mm]T(x)= \alpha \; cosh(x) +\beta \;sinh(x)[/mm].
>  
> Hallo,
>  
> neue Woche - neues Glück - neuer Übungszettel!
>  
> Zunächst habe ich mich an Aufgabenteil a) versucht:
>  
> Ich habe versucht, mir die Darstellung der Taylorreihe
> klarzumachen. u ist zwar nur zweimal diffbar, aber wegen [mm]u ' ' = u[/mm]
> gilt dann doch [mm]u^{(2k)}(0)= u(0) = 1[/mm] und [mm]u^{(2k+1)}(0)= u'(0) = 0 [/mm].
>
> So erhalte ich die angegebenen [mm]a_k.[/mm]
>
> zu b) habe ich leider keinen Ansatz.


Verwende hier das []Quotientenkriterium


>  
> zu c) Da die cosh(x) und sinh(x) in der
> Potenzreihendarstellung gegeben sind, soll ich die
> Ableitungen vermutlich nicht mit Hilfe von [mm]cosh (x) = \frac{1}{2} (e^x +e^{-x})[/mm]
> beweisen.
>  
> cosh'(x)= [mm]\sum_{k=1}^{\infty}2k \frac{x^{2k-1}}{(2k)!}[/mm]
>  =
> [mm]\sum_{k=1}^{\infty} \frac{x^{2k-1}}{(2k-1)!}.[/mm] Durch
> Indexverschiebung erhalte ich sinh (x).
>
> Muss ich noch begründen, warum ich die Potenzreihe
> gliedweise differenzieren darf?


Es gibt da einen Satz über die
gliedweise Differentiation von Potenzreihen.


>  
> Viele Grüße,
>  Palonina
>  
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]