www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihe
Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Fr 18.02.2011
Autor: piccolo1986

Hey,hab gerad in nem Buch was zu ARMA Prozessen gelesen. In einem Beweis wird folgendes angeführt:

Es istn [mm] \Phi(z) [/mm] ein Polynom vom Grad p, welches wie folgt definiert ist:
[mm] \Phi(z)=1-\Phi_{1}*z-...-\Phi_{p}z^{p} [/mm]

Zudem gilt: [mm] \Phi(z)\not= [/mm] 0 für [mm] |z|\le [/mm] 1

Hieraus wird geschlussfolgert, dass ein [mm] \varepsilon [/mm] >0 existiert, sodass [mm] \bruch{1}{\Phi(z)} [/mm] als Potenzreihenentwicklung dargestellt werden kann:

[mm] \bruch{1}{\Phi(z)}=\summe_{i=0}^{\infty}\lambda_{i}z^{i} [/mm] für [mm] |z|<1+\varepsilon [/mm]

Abschließend wird geschlussfolgert, dass [mm] \lambda_{i}(1+\bruch{\varepsilon}{2})^{i}\to [/mm] 0 wenn [mm] i\to\infty. [/mm] Also existiert ein [mm] K\in]0,\infty[, [/mm] für dass gilt:
[mm] |\lambda_{i}|
Zudem hat man [mm] \summe_{i=0}^{\infty}|\lambda_{i}|<\infty. [/mm]

Meine Frage ist nun, wie man darauf schließt, dass gilt:
[mm] \lambda_{i}(1+\bruch{\varepsilon}{2})^{i}\to [/mm] 0 wenn [mm] i\to\infty [/mm]

Ich sehe leider noch keine Begründung, warum dies der Fall ist.

Mfg
piccolo

        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 Fr 18.02.2011
Autor: fred97

Die Reihe

      

[mm] $\summe_{i=0}^{\infty}\lambda_{i}z^{i} [/mm] $ konvergiert für $ [mm] |z|<1+\varepsilon [/mm] $.

Damit konvergiert sie in $z= [mm] 1+\bruch{\varepsilon}{2}$ [/mm]

Die Reihe [mm] \summe_{i=0}^{\infty}\lambda_{i}(1+\bruch{\varepsilon}{2})^i [/mm] ist also konvergent.

Was treiben die Reihenglieder dann für i [mm] \to \infty [/mm] ??

FRED

Bezug
                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 Fr 18.02.2011
Autor: piccolo1986


> Die Reihe
>  
>
>
> [mm]\summe_{i=0}^{\infty}\lambda_{i}z^{i}[/mm] konvergiert für
> [mm]|z|<1+\varepsilon [/mm].
>  
> Damit konvergiert sie in [mm]z= 1+\bruch{\varepsilon}{2}[/mm]
>  
> Die Reihe
> [mm]\summe_{i=0}^{\infty}\lambda_{i}(1+\bruch{\varepsilon}{2})^i[/mm]
> ist also konvergent.
>  
> Was treiben die Reihenglieder dann für i [mm]\to \infty[/mm] ??
>  

... dann gehen die Reihenglieder gegen 0, danke


> FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]