www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihe
Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Fr 21.07.2006
Autor: chmanie

Aufgabe
Man bestimme alle x [mm] \in \IR, [/mm] für welche die Potenzreihe [mm] \summe_{n=2}^{\infty} [/mm] mit

[mm] a_{n} =\begin{cases} \wurzel[n]{(n-1)!}, & \mbox{für } n \mbox{ gerade} \\ 3^{n}*(1-cos(\bruch{1}{2^{n}})), & \mbox{für } n \mbox{ ungerade} \end{cases} [/mm]

konvergiert. [mm] (a_{0}=0) [/mm]

Hi, ich hab schon wieder Probleme mit einer Potenzreihe. Das sollte mit dem Wurzelkriterium II also mit dem Häufungspunktkriterium gehen. Bei einem geraden n habe ich mir überlegt, wenn ich 2 mal die n-te Wurzel ziehe müsste der 1. Häufungspunkt eigentlich 1 sein. Nur genau weiß ich das nicht und beweisen könnte ich das erst recht nicht. Und bei n ungerade hab ich überhaupt keinen Ansatz.

Vielleicht könnt ihr mir helfen!

Danke,

Christian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Do 27.07.2006
Autor: tausi

Hallo Christian!

Du musst den Konvergenzradius der Potenzreihe bestimmen. Der ist ja:

(limsup [mm] \wurzel{a_{n}^n})^{-1} [/mm]
[mm] n->\infty [/mm]

oder

(limsup [mm] \bruch{a_{n+1}}{a_{n}})^{-1} [/mm]
[mm] n->\infty [/mm]

Du musst also die Häufungspunkte der Folge [mm] a_{n} [/mm] ausrechnen. Dann nimmst du den größten und hast den limsup.

Du hast dann den Konvergenzradius und musst nur noch die Konvergenz der Reihe an den Rändern überprüfen. Da teilst du einach die Reihe in eine mit den geraden und eine mit den ungeraden Koeffizienten [mm] a_{n} [/mm] auf.

Ich hoffe, dir geholfen zu haben,
Tausi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]