www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Potenzen
Potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 22.01.2007
Autor: doopey

Brauch hier mal eine Korrektur, da ich total unsicher bei den Potenzen bin ^^

Danke, schonmal!
[mm] (a^{0,6})^{1,2} [/mm]

Da hab ich folgenes Ergebnis raus:
[mm] a^{0,72} [/mm]

(Hoffe das das mit diesen Zeichen unten geklappt hat, weil ich da auch noch nicht so durchblicke ;) )



        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Mo 22.01.2007
Autor: Stefan-auchLotti


> Brauch hier mal eine Korrektur, da ich total unsicher bei
> den Potenzen bin ^^
>  
> Danke, schonmal!
>  [mm](a^{0,6})^{1,2}[/mm]
>  
> Da hab ich folgenes Ergebnis raus:
>  [mm]a^{0,72}[/mm]
>  
> (Hoffe das das mit diesen Zeichen unten geklappt hat, weil
> ich da auch noch nicht so durchblicke ;) )
>  
>  

[mm] $\rmfamily \text{Hi,}$ [/mm]

[mm] $\rmfamily \text{Korrekt, die Regel ist }\left(a^n\right)^{m}=a^{n*m}\text{.}$ [/mm]

[mm] $\rmfamily \text{Gruß, Stefan.}$ [/mm]

Bezug
                
Bezug
Potenzen: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 17:41 Mo 22.01.2007
Autor: doopey

Hier ist nochmal so eine komische Aufgabe *hehe*

~Danke für eben, mal was richtig ;) ~

Also hier lautet die Aufgabe:

b^- [mm] \bruch{1}{2} [/mm]
-----------------------
[mm] \wurzel[2]{b} [/mm]

Der Strich soll ein Bruchstrich sein, finde den grad nicht!

Danke nochmal :)

Bezug
                        
Bezug
Potenzen: sorry, was falsch!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Mo 22.01.2007
Autor: doopey

Nochmal die Aufgabe...

das obere auf dem Bruchstrich soll:

b hoch [mm] -\bruch{1}{2} [/mm]

und ich habe raus:

[mm] b^{-1} [/mm]

Bezug
                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Mo 22.01.2007
Autor: Stefan-auchLotti


> Hier ist nochmal so eine komische Aufgabe *hehe*
>  
> ~Danke für eben, mal was richtig ;) ~
>  
> Also hier lautet die Aufgabe:
>  
> b^- [mm]\bruch{1}{2}[/mm]
>  -----------------------
>  [mm]\wurzel[2]{b}[/mm]
>  
> Der Strich soll ein Bruchstrich sein, finde den grad
> nicht!
>  
> Danke nochmal :)

[mm] $\rmfamily \text{Hast du Ansätze? Hier musst du das folgendes Gesetz anwenden: }\bruch{a^{m}}{a^{n}}=a^{m-n}$ [/mm]

[mm] $\rmfamily \text{Tipp: du musst hier was leicht umschreiben.}$ [/mm]

[mm] $\rmfamily \text{Stefan.}$ [/mm]

Bezug
                                
Bezug
Potenzen: Idee
Status: (Frage) beantwortet Status 
Datum: 17:49 Mo 22.01.2007
Autor: doopey

Also, ich bin mir nicht sicher, aber habe ein Ergebnis:

[mm] b^{-1} [/mm]

Bezug
                                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Mo 22.01.2007
Autor: Stefan-auchLotti


> Also, ich bin mir nicht sicher, aber habe ein Ergebnis:
>  
> [mm]b^{-1}[/mm]  

[mm] $\rmfamily \text{Stimmt!}$ [/mm]

[mm] $\rmfamily \text{Stefan.}$[/mm]

Bezug
                                                
Bezug
Potenzen: Ansatz felht mir
Status: (Frage) beantwortet Status 
Datum: 18:03 Mo 22.01.2007
Autor: doopey

Jetzt hat es richtig gut geklappt, aber hänge an den letzten Aufgaben und da fehlt mir der Ansatz!

[mm] (r^{3}\*s^{-5})^{0,7} [/mm]

Weil da ist doch Basis und Exponenten voll unterschiedlich -.-

Bezug
                                                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mo 22.01.2007
Autor: Stefan-auchLotti


> Jetzt hat es richtig gut geklappt, aber hänge an den
> letzten Aufgaben und da fehlt mir der Ansatz!
>  
> [mm](r^{3}\*s^{-5})^{0,7}[/mm]
>  
> Weil da ist doch Basis und Exponenten voll unterschiedlich
> -.-

[mm] $\rmfamily \text{Zwar gilt }\left(a+b\right)^n\not=a^n+b^n\text{, aber: }\left(a*b\right)^n=a^n*b^n$ [/mm]

[mm] $\rmfamily \text{Stefan.}$ [/mm]

Bezug
                                                                
Bezug
Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 23.01.2007
Autor: doopey

Kommt da überhaupt eine Lösung raus? weil die Exponenten und die Basis  unterschiedlich ist. damit komme ich grad garnicht klar!
Bitte um Hilfe,
danke melissa

Bezug
                                                                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Di 23.01.2007
Autor: Herby

Hallo Melissa,

> Kommt da überhaupt eine Lösung raus? weil die Exponenten
> und die Basis  unterschiedlich ist. damit komme ich grad
> garnicht klar!

ja, es kommt eine Lösung raus, nur kann man, wie du schon richtig bemerkt hast, die Basen nicht zusammenfassen.

Es ergibt sich also:

[mm] (r^{3}\*s^{-5})^{0,7}=r^{(3*0,7)}*s^{(-5*0,7)}=r^{2,1}*s^{-3,5}=\bruch{r^{2,1}}{s^{3,5}} [/mm]


Liebe Grüße
Herby

Bezug
                                                                                
Bezug
Potenzen: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Di 23.01.2007
Autor: doopey

danke hehe :)
liebe grüße zurück, melissa..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]