www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Potenz 0
Potenz 0 < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenz 0: Ableitungsfunktionen und ^0
Status: (Frage) beantwortet Status 
Datum: 15:37 Di 13.08.2013
Autor: OpaHoppenstedt

Ich bin gerade beim Thema Ableitungen von Funktionen, um jeweils die Steigung in einem Punkt x im Graphen bestimmen zu können.

Die Regeln zum Ableiten meine ich gut verstanden zu haben. Offensichtlich gibt es aber noch ein Missverständnis.


Die Regel:

Die Potenzfunktion f(x) = [mm] x^n [/mm]
hat die Ableitung f´(x) = n * x^(n-1)


Das Problem:

Bei einer Beispielaufgabe kommt eine 2 vor und das erwartete Ergebnis kann ich nicht nachvollziehen.

f(x) = 0,5 [mm] x^3 [/mm]  -  3 [mm] x^2 [/mm]  +  2


Die 2 müsste ja gleich sein mit [mm] 2^1. [/mm] Also verfahre ich wie folgt, um die Ableitung zu bestimmen:

f´(x) = 0,5 * 3 x^(3 - 1)  -  3 * 2 x^(2 - 1)  +  1 * 2^(1 - 1)

        = 1,5 [mm] x^2 [/mm]  -  6 [mm] x^1 [/mm]  +  [mm] 2^0 [/mm]

        = 1,5 [mm] x^2 [/mm]  -  6 x  +  1

...denn [mm] 2^0 [/mm] sollte = 1 sein oder nicht?
Mein Taschenrechner bestätigt das.
Gelernt habe ich [mm] x^0 [/mm] = 1.

Die erwartete Ableitung ist aber f´(x) = 1,5 [mm] x^2 [/mm]  - 6 x

...keine + 1 am Ende. Bei anderen Beispielaufgaben ist das genauso. Das verstehe ich momentan allerdings garnicht.






Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenz 0: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Di 13.08.2013
Autor: M.Rex

Hallo


> Ich bin gerade beim Thema Ableitungen von Funktionen, um
> jeweils die Steigung in einem Punkt x im Graphen bestimmen
> zu können.

>

> Die Regeln zum Ableiten meine ich gut verstanden zu haben.
> Offensichtlich gibt es aber noch ein Missverständnis.

>
>

> Die Regel:

>

> Die Potenzfunktion f(x) = [mm]x^n[/mm]
> hat die Ableitung f´(x) = n * x^(n-1)

>
>

> Das Problem:

>

> Bei einer Beispielaufgabe kommt eine 2 vor und das
> erwartete Ergebnis kann ich nicht nachvollziehen.

>

> f(x) = 0,5 [mm]x^3[/mm] - 3 [mm]x^2[/mm] + 2

>
>

> Die 2 müsste ja gleich sein mit [mm]2^1.[/mm]

Nein, die 2 wäre - wenn überhaupt - gleichzusetzen mit [mm] 2\red{x}^{0} [/mm]

Und das ergibt, nach obiger Regel die Ableitung
[mm] $2\cdot0\cdot x^{-1}=0$ [/mm]



> Also verfahre ich wie
> folgt, um die Ableitung zu bestimmen:

>

> f´(x) = 0,5 * 3 x^(3 - 1) - 3 * 2 x^(2 - 1) + 1 * 2^(1
> - 1)

>

> = 1,5 [mm]x^2[/mm] - 6 [mm]x^1[/mm] + [mm]2^0[/mm]

>

> = 1,5 [mm]x^2[/mm] - 6 x + 1

>

> ...denn [mm]2^0[/mm] sollte = 1 sein oder nicht?
> Mein Taschenrechner bestätigt das.
> Gelernt habe ich [mm]x^0[/mm] = 1.

>

> Die erwartete Ableitung ist aber f´(x) = 1,5 [mm]x^2[/mm] - 6 x

>

> ...keine + 1 am Ende. Bei anderen Beispielaufgaben ist das
> genauso. Das verstehe ich momentan allerdings garnicht.

>

Überlege mal, wie die Funktion g(x)=2 im Koordinatensytem aussieht. Es sich doch eine waagerechte Gerade mit der konstanten Steigung 0. Also ist g'(x)=0

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]