www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Potential in Kugelkoordinaten
Potential in Kugelkoordinaten < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potential in Kugelkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Sa 05.01.2013
Autor: aiedala

Hallo,

Ich hänge gerade daran fest, nachzuvollziehen, warum beim Potential einer homogen geladenen Kugel folgender Zusammenhang besteht:

[mm] \frac{1}{\left|\vec{r}-\vec{r}'\right|}=\frac{1}{\sqrt{r^{2}+r'^{2}-2rr'\cos\vartheta}} [/mm]

Wegen der Kugelsymmetrie kann man sich ja an sich den Punkt immer auf die z-Achse legen:

[mm] \vec{r}=\left(\begin{array}{c} 0\\ 0\\ r \end{array}\right) [/mm]

[mm] \vec{r}'=\left(\begin{array}{c} r'\sin\vartheta'\cos\varphi'\\ r'\sin\vartheta'\sin\varphi'\\ r \end{array}\right) [/mm]

Meiner Meinung nach müsste dann aber folgender Ausdruck quadriert und daraus die Wurzel genommen werden:

[mm] r-r'\cos\vartheta' [/mm]

Dabei kommt bei mir [mm] \sqrt{r^{2}+r'^{2}\cos^{2}\vartheta'-2rr'\cos\vartheta'} [/mm]
im Nenner raus, was offensichtlich nicht das gleiche ist, wie das, was raus kommen soll...

Könnt ihr mir da weiter helfen?

Liebe Grüße,
Aiedala

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potential in Kugelkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Sa 05.01.2013
Autor: Richie1401

Hallo und herzlich Willkommen hier im Forum!

> Hallo,
>  
> Ich hänge gerade daran fest, nachzuvollziehen, warum beim
> Potential einer homogen geladenen Kugel folgender
> Zusammenhang besteht:
>  
> [mm]\frac{1}{\left|\vec{r}-\vec{r}'\right|}=\frac{1}{\sqrt{r^{2}+r'^{2}-2rr'\cos\vartheta}}[/mm]
>  
> Wegen der Kugelsymmetrie kann man sich ja an sich den Punkt
> immer auf die z-Achse legen:
>  
> [mm]\vec{r}=\left(\begin{array}{c} 0\\ 0\\ r \end{array}\right)[/mm]
>  
> [mm]\vec{r}'=\left(\begin{array}{c} r'\sin\vartheta'\cos\varphi'\\ r'\sin\vartheta'\sin\varphi'\\ r \end{array}\right)[/mm]

Hier stimmt doch was nicht. der letzte Eintrag sollte [mm] r'\cos\vartheta' [/mm] sein.

Berechne [mm] \vec{r}-\vec{r'} [/mm] und bestimme den Betrag. Dann kommst du durch Anwendung der Additionstheoreme genau auf die gewünschte Lösung. Passt alles wunderbar.

>  
> Meiner Meinung nach müsste dann aber folgender Ausdruck
> quadriert und daraus die Wurzel genommen werden:
>  
> [mm]r-r'\cos\vartheta'[/mm]
>  
> Dabei kommt bei mir
> [mm]\sqrt{r^{2}+r'^{2}\cos^{2}\vartheta'-2rr'\cos\vartheta'}[/mm]
>  im Nenner raus, was offensichtlich nicht das gleiche ist,
> wie das, was raus kommen soll...
>  
> Könnt ihr mir da weiter helfen?
>  
> Liebe Grüße,
>  Aiedala
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Potential in Kugelkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Sa 05.01.2013
Autor: aiedala

Ach mist, da hat mir Copy&Paste unbemerkt einen Strich durch die Rechnung gemacht.

Ich meinte natürlich [mm] \vec{r}=\left(\begin{array}{c} r'\sin\vartheta'\cos\varphi'\\ r'\sin\vartheta'\sin\varphi'\\ r'\cos\vartheta' \end{array}\right) [/mm]

Wenn ich jetzt die z-Komponente dieses Vektors von r subtrahiere und den Betrag des ganzen nehme, komme ich nach wie vor auf meine oben angegebene Lösung. Ich weiß leider auch nicht, wie ich hier die Additionstheoreme einbauen sollte... schließlich gibt es nur einen Cosinus.

Bezug
                        
Bezug
Potential in Kugelkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Sa 05.01.2013
Autor: Richie1401

Abend,

eigentlich verlangen wir hier, dass Rechnungen vorgetragen werden. Aber es gibt jetzt einfach mal einen Anfangsbonus für dich ;)

[mm] \vec{x}=\vektor{r'\sin\vartheta'\cos\varphi'\\ r'\sin\vartheta'\sin\varphi'\\ r'\cos\vartheta'}-\vektor{0\\0\\r} [/mm]

Ich möchte wegen der Einfachheit jetzt mal folgendes Nutzen: [mm] a=\vartheta' [/mm] und [mm] b=\varphi', [/mm] sowie vertausche ich r' mit r. Ich hoffe du kannst mir folgen.

Wir haben also
[mm] \vec{x}=\vektor{r\sin(a)\cos(b)\\ r\sin(a)\sin(b)\\ r\cos(a)-r'} [/mm]

Es ist
[mm] |\vec{x}|^2 [/mm]
[mm] =r^2\sin^2(a)\cos^2(b)+ r^2\sin^2(a)\sin^2(b)+r^2\cos^2(a)+r'^2-2r'r\cos(a) [/mm]

[mm] =r^2\sin^2(a)(\underbrace{\cos^2(b)+sin^2(b)}_{=1})+r^2\cos^2(a)+r'^2-2r'r\cos(a) [/mm]

[mm] =r^2\sin^2(a)+r^2\cos^2(a)+r'^2-2r'r\cos(a) [/mm]

[mm] =r^2+r'^2-2r'r\cos(a) [/mm]

Wenn wir das ganze jetzt mal auf deine ursprünglichen Variablen rucktransformieren so erhalten wir

[mm] \vec{x}=\sqrt{r'^2+r^2-2rr'\cos\vartheta'} [/mm]

Und damit haben wir das gewünschte Ergebnis.

Bezug
                                
Bezug
Potential in Kugelkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:42 Sa 05.01.2013
Autor: aiedala

Vielen Dank, ich stand wirklich auf einem dicken Schlauch, jetzt weiß ich, wo mein Fehler war =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]