www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Potential eines Vektorfeldes
Potential eines Vektorfeldes < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potential eines Vektorfeldes: Hinweise
Status: (Frage) beantwortet Status 
Datum: 19:42 So 11.09.2011
Autor: Mathegirl

Kann mir jemand erklären wie man überprüft, ob ein Vektorfeld ein Potential besitzt?

Kann mir das mal jemand an diesem Beispiel erklären? (oder an einem anderen, das ist egal) Wie geht man hier vor?

F(x,y)= [mm] e^x \vektor{siny \\ cosy} [/mm]


MfG
Mathegirl

        
Bezug
Potential eines Vektorfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 20:03 So 11.09.2011
Autor: MathePower

Hallo Mathegirl,

> Kann mir jemand erklären wie man überprüft, ob ein
> Vektorfeld ein Potential besitzt?
>  
> Kann mir das mal jemand an diesem Beispiel erklären? (oder
> an einem anderen, das ist egal) Wie geht man hier vor?
>  
> F(x,y)= [mm]e^x \vektor{siny \\ cosy}[/mm]
>  


Es muss die Integrabilitätsbedingung

[mm]\bruch{\partial F_{1}}{\partial y}=\bruch{\partial F_{2}}{\partial x}[/mm]

erfüllt sein, wobei

[mm]F_{1}[/mm] die erste Komponente von F und
[mm]F_{2}[/mm] die zweite Komponente von F bedeuten.

( [mm]F\left(x,y\right)=\pmat{F_{1}\left(x,y\right) \\ F_{2}\left(x,y\right)}[/mm] )


Mehr dazu findest Du  hier: []Integrabilitätsbedingung


>
> MfG
> Mathegirl


Gruss
MathePower

Bezug
                
Bezug
Potential eines Vektorfeldes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 So 11.09.2011
Autor: Mathegirl

okay...dann versuche ich das mal zu zeigen:

in diesem Fall liegt ein Potential vor, denn nach der Integrabilitätsbedingung gilt:

[mm] e^x*siny+e^x*cosy [/mm] = [mm] e^x*cosy+e^x*siny [/mm]

stimmt das so?

Okay...dann versuche ich mich zur Übung gleich nochmal an einem Beispiel:

[mm] F(x,y)=\vektor{xy^4+2x5 \\ 2x^2y^3-y^6} [/mm]

[mm] 4xy^3 [/mm] = [mm] 4xy^3^ [/mm] also liegt auch hier ein Potential vor.

Aber reicht das wenn ich das so in der Klausur zeige? ich ahbe mir das etwas komplizierter vorgestellt...


MfG
Mathegirl

Bezug
                        
Bezug
Potential eines Vektorfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 So 11.09.2011
Autor: MathePower

Hallo Mathegirl,

> okay...dann versuche ich das mal zu zeigen:
>  
> in diesem Fall liegt ein Potential vor, denn nach der
> Integrabilitätsbedingung gilt:
>  
> [mm]e^x*siny+e^x*cosy[/mm] = [mm]e^x*cosy+e^x*siny[/mm]
>  
> stimmt das so?

>


Der Summand [mm]e^{x}*\sin\left(y\right)[/mm] ist auf beiden Seiten zuviel.

  

> Okay...dann versuche ich mich zur Übung gleich nochmal an
> einem Beispiel:
>  
> [mm]F(x,y)=\vektor{xy^4+2x5 \\ 2x^2y^3-y^6}[/mm]
>  
> [mm]4xy^3[/mm] = [mm]4xy^3^[/mm] also liegt auch hier ein Potential vor.
>
> Aber reicht das wenn ich das so in der Klausur zeige? ich
> ahbe mir das etwas komplizierter vorgestellt...
>  


Natürlich muß die Menge, auf der F definiert ist,
einfach zusammenhängend sein.


>
> MfG
> Mathegirl


Gruss
MathePower

Bezug
                                
Bezug
Potential eines Vektorfeldes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 So 11.09.2011
Autor: Mathegirl

Doofe Frage, aber was meinst du damit?

"Natürlich muß die Menge, auf der F definiert ist,
einfach zusammenhängend sein." ??


MfG
Mathegirl


Bezug
                                        
Bezug
Potential eines Vektorfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 So 11.09.2011
Autor: MathePower

Hallo Mathegirl,

> Doofe Frage, aber was meinst du damit?
>
> "Natürlich muß die Menge, auf der F definiert ist,
> einfach zusammenhängend sein." ??
>  


Im 2-dimensionalen darf die Menge keine Löcher enthalten.


>
> MfG
>  Mathegirl

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]