www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Potential aus Vektorfeld
Potential aus Vektorfeld < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potential aus Vektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 Mo 05.09.2011
Autor: LordPippin

Hallo,
ich möchte aus einem einfachen Vektorfeld ein Potential [mm] \Phi [/mm] berechnen.
[mm] \vec{A}(\vec{r})=\vektor{y \\ x \\0} [/mm]
[mm] \nabla \times \vec{A}(\vec{r}) [/mm] = 0 als existiert [mm] \Phi [/mm]
Es ist ja [mm] \vec{A}(\vec{r})=\nabla \Phi(\vec{r}), [/mm] also [mm] \Phi(\vec{r})=\integral_{}^{}{\vec{A}(\vec{r}) d\vec{r}} [/mm]
Somit [mm] \Phi(\vec{r})=\integral_{}^{}{\vektor{y \\ x \\0}\vektor{dx \\ dy \\ dz}}=\integral_{}^{}{(ydx+xdy+0dz)}=\integral_{}^{}{ydx}\integral_{}^{}{xdy}=xy+xy=2xy [/mm]

Nach der Musterlösung soll nur xy rauskommen.

Wo ist mein Fehler? Habe ich die Formel falsch nach [mm] \Phi [/mm] umgestellt?

Gruß LordPippin

        
Bezug
Potential aus Vektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Mo 05.09.2011
Autor: notinX

Hallo,

> Hallo,
>  ich möchte aus einem einfachen Vektorfeld ein Potential
> [mm]\Phi[/mm] berechnen.
> [mm]\vec{A}(\vec{r})=\vektor{y \\ x \\0}[/mm]
>  [mm]\nabla \times \vec{A}(\vec{r})[/mm]
> = 0 als existiert [mm]\Phi[/mm]

richtig.

>  Es ist ja [mm]\vec{A}(\vec{r})=\nabla \Phi(\vec{r}),[/mm] also
> [mm]\Phi(\vec{r})=\integral_{}^{}{\vec{A}(\vec{r}) d\vec{r}}[/mm]
>  
> Somit [mm]\Phi(\vec{r})=\integral_{}^{}{\vektor{y \\ x \\0}\vektor{dx \\ dy \\ dz}}=\integral_{}^{}{(ydx+xdy+0dz)}=\integral_{}^{}{ydx}\integral_{}^{}{xdy}=xy+xy=2xy[/mm]

Du musst jede Komponente nach der jeweiligen Variable einzeln integrieren, dann erhältst Du zu jeder Integration eine Integrationskonstante, die von den jeweils anderen Variablen abhängt. Diese Konstante musst Du dann so bestimmen, dass [mm] $\nabla \Phi(\vec{r})= \vec{A}(\vec{r})$ [/mm] gilt.

>  
> Nach der Musterlösung soll nur xy rauskommen.
>  
> Wo ist mein Fehler? Habe ich die Formel falsch nach [mm]\Phi[/mm]
> umgestellt?
>  
> Gruß LordPippin

Gruß,

notinX

Bezug
                
Bezug
Potential aus Vektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 Di 06.09.2011
Autor: LordPippin

Hallo notinX, vielen Dank für deine Hilfe.

Wenn ich komponentenweise integriere komme ich auf Folgendes
[mm] \vektor{xy+c(y)\\xy+c(x)\\0} [/mm] die Integrationskonstante wäre ja von der jeweils anderen Variable abhängig, da z=0 eben nur von x bzw. y.
Nun leite ich z.B. die x-Komponente nach y ab und setze es mit der y-Komponente des Vektorfeldes gleich um c(y) zu erhalten
[mm] \Rightarrow [/mm] x+c'(y)=x  [mm] \Rightarrow [/mm]  c'(y)=0  [mm] \Rightarrow [/mm]  c(y)=0
Das gleiche um c(x) zu erhalten und man beommt als Ergebnis [mm] \Phi=xy [/mm]

Wäre das so richtig?

Gruß LordPippin

Bezug
                        
Bezug
Potential aus Vektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Di 06.09.2011
Autor: notinX

Hallo nochmal,

> Hallo notinX, vielen Dank für deine Hilfe.
>  
> Wenn ich komponentenweise integriere komme ich auf
> Folgendes
>  [mm]\vektor{xy+c(y)\\xy+c(x)\\0}[/mm] die Integrationskonstante
> wäre ja von den jeweils anderen Variablen abhängig, da z=0
> eben nur von x bzw. y.

[mm] $\left(\begin{array}{c} xy+c(y,{\color{red}z})\\ xy+c(x,{\color{red}z})\\ {\color{red}c(x,y)}\end{array}\right)$ [/mm]

>  Nun leite ich z.B. die x-Komponente nach y ab und setze es
> mit der y-Komponente des Vektorfeldes gleich um c(y) zu
> erhalten
>  [mm]\Rightarrow[/mm] x+c'(y)=x  [mm]\Rightarrow[/mm]  c'(y)=0  [mm]\Rightarrow[/mm]  
> c(y)=0
>  Das gleiche um c(x) zu erhalten und man beommt als
> Ergebnis [mm]\Phi=xy[/mm]
>  
> Wäre das so richtig?

Probier es aus. Wenn $ [mm] \nabla \Phi(\vec{r})= \vec{A}(\vec{r}) [/mm] $ gilt, stimmts.

>  
> Gruß LordPippin

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]