www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Potential
Potential < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potential: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mi 29.06.2011
Autor: engels

Aufgabe
Gegeben sei [mm] v(x,y,z)=\vektor{y^{2} \\ 2xy+z \\ y-1}. [/mm]

Berechnen sie [mm] \integral_{}^{}{ v(x,z,y) dx} [/mm] mit Hilfe eines Potentials.

So irgendwie bin ich grade verwirrt. Kann ich nicht einfach nach x integrieren? Ich würde dann [mm] \vektor{xy^{2} \\ x^{2}y+zx \\ x(y-1)} [/mm] erhalten. Aber wo soll ich das mit einem Potential lösen?

        
Bezug
Potential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 Mi 29.06.2011
Autor: notinX

Hallo,

> Gegeben sei [mm]v(x,y,z)=\vektor{y^{2} \\ 2xy+z \\ y-1}.[/mm]
>  
> Berechnen sie [mm]\integral_{}^{}{ v(x,z,y) dx}[/mm] mit Hilfe eines
> Potentials
>  So irgendwie bin ich grade verwirrt. Kann ich nicht

das verwirrt mich auch. Ist das wirklich die korrekte Aufgabenstellung? Vielleicht sollst Du das Potential bestimmen und dieses dann nach x integrieren.

> einfach nach x integrieren? Ich würde dann [mm]\vektor{xy^{2} \\ x^{2}y+zx \\ x(y-1)}[/mm]
> erhalten. Aber wo soll ich das mit einem Potential lösen?

Gruß,

notinX

Bezug
                
Bezug
Potential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Mi 29.06.2011
Autor: engels

Vorher gab es noch eine andere Teilaufgabe:

1) [mm] \alpha(t)= \vektor{ \bruch{2}{3}t^{3}+t \\ t^{2} \\ \wurzel[]{3}t} [/mm] mit 0 [mm] \le [/mm] t [mm] \le [/mm] 3

Berechnen sie die Länge von [mm] \alpha [/mm] .

2) Berechnen sie [mm] \integral_{\alpha}^{}{v(x,y,z) dx} [/mm] mit Hilfe eines Potentials.

So wie ich die Aufgabe verstanden habe, soll ich doch Stammfunktion finden und dann die Werte von [mm] \alpha(3) [/mm] und [mm] \alpha(0) [/mm] einsetzen oder?

Bezug
        
Bezug
Potential: Antwort
Status: (Antwort) fertig Status 
Datum: 02:11 Do 30.06.2011
Autor: leduart

Hallo
jetzt sieht das schon anders aus, du sollst längs der Kurve integrieren!
Wenn du ein vektorfeld hast, das ein potential hat, ist das integral nur vom anfangs und endpunkt abhängig und zwar die differenz der potentials. steht da wirklich dx im integral?
gruss leduart


Bezug
                
Bezug
Potential: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:37 Do 30.06.2011
Autor: engels

Ja es steht nur dx im Integral.

Das ich Start und Endpunkt des Potentials [mm] \alpha [/mm] einsetzen muss, war mir eigentlich soweit klar, nur das mit dem dx versteh ich nicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]