www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Positiv definite Matrizen
Positiv definite Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Positiv definite Matrizen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:49 Mi 09.01.2013
Autor: grasimu

Aufgabe
Seien K [mm] \in {\IR,\IC}, [/mm] n [mm] \in \IN_{\ge1} [/mm] und A [mm] \in M_{n}(K) [/mm] positiv definit(also per Definition auch symmetrisch bzw. hermitesch). Zeigen Sie:
a) Jeder Eigenwert von A ist reell und positiv.
b) det A > 0.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

a) Wie bestimme ich die Eigenwerte von A?

b) Für eine nxn Matrix mit n = 2 errechne ich die Determinante indem ich det A = [mm] a_{1,1}a_{2,2} [/mm] - [mm] a_{1,2}a_{2,1} [/mm] rechne. Aber warum ist dies immer > 0 ?

        
Bezug
Positiv definite Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Mi 09.01.2013
Autor: fred97


> Seien K [mm]\in {\IR,\IC},[/mm] n [mm]\in \IN_{\ge1}[/mm] und A [mm]\in M_{n}(K)[/mm]
> positiv definit(also per Definition auch symmetrisch bzw.
> hermitesch). Zeigen Sie:
>  a) Jeder Eigenwert von A ist reell und positiv.
>  b) det A > 0.

>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> a) Wie bestimme ich die Eigenwerte von A?

Bestimmen sollst Du sie nicht. Du sollst zeigen , dass sie >0 sind.



Sei <*,*> das übliche Skalarprodukt auf [mm] \IR^n [/mm] (bzw. [mm] \IC^n) [/mm]

Sei [mm] \mu [/mm] ein Eigenwert von A und x ein zugeh. Eigenvektor, also x [mm] \ne [/mm] 0 und [mm] Ax=\mu [/mm] x. Wir können ||x||=1 annehmen, also [mm] =||x||^2=1 [/mm]

Weil A positiv definit ist, ist <Ax,x> >0

Weil [mm] \mu [/mm] ein EW von A ist und x ein zugeh. EV ist, haben wir: [mm] $=<\mux,x>= \mu [/mm] <x,x>$

Hilft das ?

>  
> b) Für eine nxn Matrix mit n = 2 errechne ich die
> Determinante indem ich det A = [mm]a_{1,1}a_{2,2}[/mm] -
> [mm]a_{1,2}a_{2,1}[/mm] rechne. Aber warum ist dies immer > 0 ?

Nutze die Symmetrie von A : [mm] a_{12} =a_{21} [/mm] und die Tatsache , dass A pos. def. ist.

FRED


Bezug
                
Bezug
Positiv definite Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Mi 09.01.2013
Autor: grasimu


> > Seien K [mm]\in {\IR,\IC},[/mm] n [mm]\in \IN_{\ge1}[/mm] und A [mm]\in M_{n}(K)[/mm]
> > positiv definit(also per Definition auch symmetrisch bzw.
> > hermitesch). Zeigen Sie:
>  >  a) Jeder Eigenwert von A ist reell und positiv.
>  >  b) det A > 0.

>  >  Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>  >  
> > a) Wie bestimme ich die Eigenwerte von A?
>  
> Bestimmen sollst Du sie nicht. Du sollst zeigen , dass sie
> >0 sind.
>  
>
>
> Sei <*,*> das übliche Skalarprodukt auf [mm]\IR^n[/mm] (bzw.
> [mm]\IC^n)[/mm]
>  
> Sei [mm]\mu[/mm] ein Eigenwert von A und x ein zugeh. Eigenvektor,
> also x [mm]\ne[/mm] 0 und [mm]Ax=\mu[/mm] x. Wir können ||x||=1 annehmen,
> also [mm]=||x||^2=1[/mm]
>  
> Weil A positiv definit ist, ist <Ax,x> >0
>  
> Weil [mm]\mu[/mm] ein EW von A ist und x ein zugeh. EV ist, haben
> wir: [mm]=<\mux,x>= \mu [/mm]
>  
> Hilft das ?
>  

Bestimmt!Muss ich mir aber nochmal genau überlegen, komme darauf vielleicht nochmal zurück.

> >  

> > b) Für eine nxn Matrix mit n = 2 errechne ich die
> > Determinante indem ich det A = [mm]a_{1,1}a_{2,2}[/mm] -
> > [mm]a_{1,2}a_{2,1}[/mm] rechne. Aber warum ist dies immer > 0 ?
>  
> Nutze die Symmetrie von A : [mm]a_{12} =a_{21}[/mm] und die Tatsache
> , dass A pos. def. ist.
>  
> FRED
>  

Ja aber gerade da die Matrix symmetrisch ist habe ich für [mm] a_{12}*a_{21} [/mm] immer eine positive Zahl sprich in der Berechnung eine negative Zahl.
Angenommen wir nehmen uns A = [mm] \pmat{ 1 & 5 \\ 5 & 2 } [/mm] folgt für det A = 2 - 25 = -23 also nicht > 0!
Oder habe ich da was nicht richtig im Kopf?

gruß Grasimu


Bezug
                        
Bezug
Positiv definite Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:53 Mi 09.01.2013
Autor: fred97


> > > Seien K [mm]\in {\IR,\IC},[/mm] n [mm]\in \IN_{\ge1}[/mm] und A [mm]\in M_{n}(K)[/mm]
> > > positiv definit(also per Definition auch symmetrisch bzw.
> > > hermitesch). Zeigen Sie:
>  >  >  a) Jeder Eigenwert von A ist reell und positiv.
>  >  >  b) det A > 0.

>  >  >  Ich habe diese Frage in keinem Forum auf anderen
> > > Internetseiten gestellt.
>  >  >  
> > > a) Wie bestimme ich die Eigenwerte von A?
>  >  
> > Bestimmen sollst Du sie nicht. Du sollst zeigen , dass sie
> > >0 sind.
>  >  
> >
> >
> > Sei <*,*> das übliche Skalarprodukt auf [mm]\IR^n[/mm] (bzw.
> > [mm]\IC^n)[/mm]
>  >  
> > Sei [mm]\mu[/mm] ein Eigenwert von A und x ein zugeh. Eigenvektor,
> > also x [mm]\ne[/mm] 0 und [mm]Ax=\mu[/mm] x. Wir können ||x||=1 annehmen,
> > also [mm]=||x||^2=1[/mm]
>  >  
> > Weil A positiv definit ist, ist <Ax,x> >0
>  >  
> > Weil [mm]\mu[/mm] ein EW von A ist und x ein zugeh. EV ist, haben
> > wir: [mm]=<\mux,x>= \mu [/mm]
>  >  
> > Hilft das ?
>  >  
> Bestimmt!Muss ich mir aber nochmal genau überlegen, komme
> darauf vielleicht nochmal zurück.
>  
> > >  

> > > b) Für eine nxn Matrix mit n = 2 errechne ich die
> > > Determinante indem ich det A = [mm]a_{1,1}a_{2,2}[/mm] -
> > > [mm]a_{1,2}a_{2,1}[/mm] rechne. Aber warum ist dies immer > 0 ?
>  >  
> > Nutze die Symmetrie von A : [mm]a_{12} =a_{21}[/mm] und die Tatsache
> > , dass A pos. def. ist.
>  >  
> > FRED
>  >  
> Ja aber gerade da die Matrix symmetrisch ist habe ich für
> [mm]a_{12}*a_{21}[/mm] immer eine positive Zahl sprich in der
> Berechnung eine negative Zahl.
>  Angenommen wir nehmen uns A = [mm]\pmat{ 1 & 5 \\ 5 & 2 }[/mm]
> folgt für det A = 2 - 25 = -23 also nicht > 0!
>  Oder habe ich da was nicht richtig im Kopf?

Dieses A ist nicht positiv def. !

FRED

>  
> gruß Grasimu
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]