www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Positiv definite Bilinearform
Positiv definite Bilinearform < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Positiv definite Bilinearform: editiert
Status: (Frage) beantwortet Status 
Datum: 18:17 Mo 02.08.2010
Autor: Master_X

Hallo,
ich habe die symmetrische Bilinearform
<u,v> = [mm] \int_{\Omega} \nabla [/mm] u [mm] \nabla [/mm] v  [mm] \quad v\in H_0^{1} [/mm]
und denke, dass diese auch positiv definit ist.

kann mir das jemand bestätigen?

danke

EDIT:
$ [mm] \Omega \subset \IR^n, [/mm] $ mit Lipschitz-Rand.
$ [mm] H_0^1 [/mm] $ ist der Sobolev Raum $ [mm] H^1 [/mm] $ (über $ [mm] L^2), [/mm] $ mit Null-Rändern im Spur Sinn.
u,v $ [mm] \in H_0^1. [/mm] $
$ [mm] \nabla [/mm] $ ist der Gradient und und $ [mm] \nabla [/mm] $ u, $ [mm] \nabla [/mm] $ v sind mit dem euklidischen Skalarprodukt verknüpft.

Lösung:
Damit sind dann auch $ [mm] u_x, u_y, v_x, v_y \in L^2. [/mm] $
Damit ist dann der Integrand eine Summe von n $ [mm] L^2- [/mm] $ Skalarprodukten, weshalb die positive Definitheit gewährleistet ist.

Also ist <u,v> ein Skalarprodukt.


        
Bezug
Positiv definite Bilinearform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:30 Di 03.08.2010
Autor: angela.h.b.


> Hallo,
>  ich habe die symmetrische Bilinearform
>  <u,v> = [mm]\int_{\Omega} \nabla[/mm] u [mm]\nabla[/mm] v  [mm]\quad v\in H_0^{1}[/mm]

>  
> und denke, dass diese auch positiv definit ist.

Hallo,

dann wäre es sicher geschickt, uns Deine Überlegungen dazu mitzuteilen.

Sinnvoll wäre es sicher auch, wenn Du uns sagen würdest, was die Buchstaben bedeuten, also [mm] \Omega, H_0^1, [/mm] welcher Menge u entstammt, und ggf. auch , ob mit [mm] \nabla [/mm] der Nablaoperator gemeint ist oder irgendetwas anderes.
Wie sind [mm] \nabla [/mm] u und [mm] \nabla [/mm] v miteinander verknüpft? Was ist die Integrationsvariable? (Oder stelle ich mich gerade etwas dumm an?)

Gruß v. Angela


>
> kann mir das jemand bestätigen?


>  
> danke
>  


Bezug
        
Bezug
Positiv definite Bilinearform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 Di 03.08.2010
Autor: Master_X

[mm] \Omega \subset \IR^n, [/mm] mit Lipschitz-Rand.
[mm] H_0^1 [/mm] ist der Sobolev Raum [mm] H^1 [/mm] (über [mm] L^2), [/mm] mit Null-Rändern im Spur Sinn.
u,v [mm] \in H_0^1. [/mm]
[mm] \nabla [/mm] ist der Gradient und und [mm] \nabla [/mm] u, [mm] \nabla [/mm] v sind mit dem euklidischen Skalarprodukt verknüpft.

Lösung:
Damit sind dann auch [mm] u_x, u_y, v_x, v_y \in L^2. [/mm]
Damit ist dann der Integrand eine Summe von n [mm] L^2- [/mm] Skalarprodukten, weshalb die positive Definitheit gewährleistet ist.

Also ist <u,v> ein Skalarprodukt.






Bezug
        
Bezug
Positiv definite Bilinearform: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Di 03.08.2010
Autor: pelzig

Also ohne jetzt auf die Details einzugehen: aus [mm] $$\langle u,u\rangle=\int_\Omega\|\nabla u\|_2^2\ [/mm] dx=0$$ folgt wegen der Positivität des Integranden [mm]\nabla u = 0[/mm] fast überall, also [mm] $u=\operatorname{const}$ [/mm] fast überall. Jetzt benutze, dass die Spur von $u$ verschwindet um zu folgern [mm] $u=\operatorname{const}=0$ [/mm] fast überall.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]