www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Polynomwurzel
Polynomwurzel < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Mo 19.05.2008
Autor: Albtalrobin

Aufgabe
Sei f = [mm] T^{n}+a_{n-1}T^{n-1}+...+a_{0} \in \IZ[T] [/mm] und sei [mm] \alpha \in \IQ [/mm] eine Wuzel von f. Zeigen Sie:
[mm] \alpha \in \IZ [/mm] und [mm] \alpha|a_{0} [/mm]

Also ich hab jetzt mal so angefangen:
[mm] \alpha [/mm] ist eine Wurzel von f
[mm] \Rightarrow [/mm] Es ex. q [mm] \in \IZ[T] [/mm] mit f = [mm] (T-\alpha)*q \in \IZ[T] [/mm]
[mm] \Rightarrow (T-\alpha) [/mm] = 0 für [mm] T=\alpha [/mm]

Ist der Ansatz so richtig? Und wie mach ich jetzt weiter?

        
Bezug
Polynomwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mo 19.05.2008
Autor: angela.h.b.


> Sei f = [mm]T^{n}+a_{n-1}T^{n-1}+...+a_{0} \in \IZ[T][/mm] und sei
> [mm]\alpha \in \IQ[/mm] eine Wuzel von f. Zeigen Sie:
>  [mm]\alpha \in \IZ[/mm] und [mm]\alpha|a_{0}[/mm]
>  Also ich hab jetzt mal so angefangen:

>  [mm]\alpha[/mm] ist eine Wurzel von f
> [mm]\Rightarrow[/mm] Es ex. q [mm]\in \IZ[T][/mm] mit f = [mm](T-\alpha)*q \in \IZ[T][/mm]

Hallo,

das ist richtig, und Du weißt ja auch ein bißchen etwas über den Grad des Polynoms q.

Für die Aufgabe brauchst Du das nicht.

Schreibe [mm] \alpha [/mm] als gekürzten Bruch [mm] \bruch{r}{s} [/mm]  und ziehe Schlüsse aus

[mm] f(\bruch{r}{s})=0. [/mm]

Gruß v. Angela



Bezug
                
Bezug
Polynomwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Mo 19.05.2008
Autor: mattemonster

Hm....
verstehe schon, wwas du meinst...aber was kann ich jetzt für schlüsse ziehen? irgendwie kommt da bei mir nix sinnvolles zustande...

Bezug
                        
Bezug
Polynomwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Mo 19.05.2008
Autor: angela.h.b.


> Hm....
>  verstehe schon, wwas du meinst...aber was kann ich jetzt
> für schlüsse ziehen? irgendwie kommt da bei mir nix
> sinnvolles zustande...

Hallo,

das ist etwas vage...

Man müßte schon sehen, was Du dastehen hast, und vielleicht kannst Du gleich mal so multiplizieren, daß man keine Brüche mehr hat.

Gruß v. Angela


Bezug
                                
Bezug
Polynomwurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Mo 19.05.2008
Autor: mattemonster

Ok, also:

[mm] f(\bruch{r}{s}) [/mm] = 0
[mm] \Rightarrow (\bruch{r}{s})^{n} [/mm] + [mm] a_{n-1} (\bruch{r}{s})^{n-1} [/mm] + ... + [mm] a_{1} \bruch{r}{s} [/mm] + [mm] a_{0} [/mm] = 0

[mm] \Rightarrow r^{n} [/mm] + [mm] a_{n-1} r^{n-1}s [/mm] + ... + [mm] a_{1} [/mm] r [mm] s^{n-1} [/mm] + [mm] a_{0} s^{n} [/mm] = 0

Stimmt soweit, oder?  Und jetzt müsste ich ja irgendwie folgern, dass s = 1 sein muss, damit die zahl in [mm] \IZ [/mm] ist, oder?

Bezug
                                        
Bezug
Polynomwurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 Mo 19.05.2008
Autor: mattemonster

Oder stimmt des so garnicht???

Bezug
                                        
Bezug
Polynomwurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Mo 19.05.2008
Autor: andreas

hi


> [mm]f(\bruch{r}{s})[/mm] = 0
>  [mm]\Rightarrow (\bruch{r}{s})^{n}[/mm] + [mm]a_{n-1} (\bruch{r}{s})^{n-1}[/mm]
> + ... + [mm]a_{1} \bruch{r}{s}[/mm] + [mm]a_{0}[/mm] = 0
>  
> [mm]\Rightarrow r^{n}[/mm] + [mm]a_{n-1} r^{n-1}s[/mm] + ... + [mm]a_{1}[/mm] r
> [mm]s^{n-1}[/mm] + [mm]a_{0} s^{n}[/mm] = 0
>  
> Stimmt soweit, oder?

ja, das passt.


> Und jetzt müsste ich ja irgendwie
> folgern, dass s = 1 sein muss, damit die zahl in [mm]\IZ[/mm] ist,
> oder?

$s = [mm] \pm [/mm] 1$. bringe dazu alle summanden, die potenzen von $s$ enthalten auf eine seite und klammere dies aus. was kann man nun über die teilbarkeit von $r$ durch $s$ aussagen?


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]