www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Polynome, lineare Abbildungen
Polynome, lineare Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome, lineare Abbildungen: keine Idee...wie peinlich -.-
Status: (Frage) beantwortet Status 
Datum: 15:25 So 05.12.2010
Autor: BerlinerKindl

Aufgabe
Die Ableitung eines Polynoms aus P³ nach x ergibt wieder ein Polynom aus P³.
Also ist die Ableitung eine Abbildung [mm] \delta [/mm] x: P³ [mm] \to [/mm] P³  Zeigen Sie, dass [mm] \delta [/mm] x eine lineare Abbildung ist.

Hi,
ich habe diese Hausaufgabe und habe mal gar keine Idee wie ich rangehen soll...Vielleicht kann mir irgendjemand Hilfestellung geben :(.
Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynome, lineare Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 So 05.12.2010
Autor: schachuzipus

Hallo Berliner Kindl,



> Die Ableitung eines Polynoms aus P³ nach x ergibt wieder
> ein Polynom aus P³.

Ich nehme an, es sind Polynome über [mm]\IR[/mm] gemeint?

Sonst ersetze unten [mm]\IR[/mm] durch einen allg. Körper [mm]\IK[/mm]

>  Also ist die Ableitung eine Abbildung [mm]\delta[/mm] x: P³ [mm]\to[/mm]
> P³  Zeigen Sie, dass [mm]\delta[/mm] x eine lineare Abbildung ist.
>  Hi,
> ich habe diese Hausaufgabe und habe mal gar keine Idee wie
> ich rangehen soll...Vielleicht kann mir irgendjemand
> Hilfestellung geben :(.

Nun, es gilt 2 Kriterien nachzurechnen:

1) Für alle [mm]\alpha\in \IR[/mm] und alle Polynome [mm]p\in P^3[/mm] gilt: [mm]\delta_x((\alpha\cdot{}p)(x))=\alpha\cdot{}\delta_x(p(x))[/mm]

Nun, wie sieht ein allg. Polynom [mm]p[/mm] aus [mm]P^3[/mm] aus?

So: [mm]p(x)=ax^3+bx^2+cx+d[/mm]

Wie sieht dann [mm](\alpha p)(x)[/mm] aus? Und wie die Ableitung [mm]\delta_x((\alpha\cdot{}p)(x))[/mm]? Und wie [mm]\alpha\cdot \delta_x((p(x))[/mm]

2) Es ist [mm]\delta_x((p+q)(x))=\delta_x(p(x))+\delta_x(q(x))[/mm] für bel. [mm]p,q\in P^3[/mm]

Rechne das nach ...


>  Danke.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]