www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Polynome herausheben
Polynome herausheben < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome herausheben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Di 28.11.2006
Autor: rem

Hallo

Gibt es eigentlich eine allgemeine Vorgehensweise einen Polynom herauszuheben?
Also zum Beispiel [mm] x^3+2x^2+2x+1 [/mm] zu [mm] (x+1)(x^2+x+1) [/mm] oder [mm] x^3-2x^2+x [/mm] zu [mm] x(x-1)^2. [/mm]

Ich tuh mir ein bissl schwer Polynome zu vereinfachen, deshalb frag ich hier mal ob es so etwas wie ein Rezept gibt oder kommt es allein auf die mathematische Begabung an :)

mfg
Daniel

        
Bezug
Polynome herausheben: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Di 28.11.2006
Autor: Martin243

Hallo,

um ein Polynom P(x) zu faktorisieren, musst du dessen Nullstellen kennen.
Kennst du eine Nullstelle [mm] x_0 [/mm] dieses Polynoms, dann kannst du eine Polynomdivision durchführen und erhältst das Polynom Q(x).
Dann kannst du P(x) schreiben als:
$P(x) = [mm] Q(x)(x-x_0)$. [/mm]

Q(x) kannst du dann immer weiter zerlegen, indem du dessen Nullstellen suchst und wieder dividierst.

Ein Polynom zerfällt im Reellen auf diese Weise in quadratische und lineare Faktoren, im Komplexen sogar vollständig in Linearfaktoren.


Gruß
Martin


Bezug
                
Bezug
Polynome herausheben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Di 28.11.2006
Autor: rem

Super, danke!

Damit hast du mir sehr geholfen.
Noch einen schönen Dienstag Abend.

mfg
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]