www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Polynome
Polynome < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome: Ist das dann so richtig?Ich ha
Status: (Frage) beantwortet Status 
Datum: 00:20 Mi 22.05.2013
Autor: sMaus

Aufgabe
Schreiben Sie die Polynome thoch5 +t+1
in der Form (t-2)g(t)+c mit einer reelen Zahl c

Ich habe einfach (t-2)(thoch5 +t+1) = t hcoh6 -2thoch5+t²-2-2 ist das richtig?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 00:31 Mi 22.05.2013
Autor: ChopSuey

Hallo sMaus,

wirf doch bei Gelegenheit mal einen Blick in unsere Forenregeln.

Deine Funktion lautet vermutlich $ f(t) = [mm] t^5 [/mm] + t + 1 $
In LaTeX: f(x) = t^5+t+1

Du musst eine Funktion $g(t) $ so finden, dass $ f(t) = (t-2)g(t) + c $ mit einem geeigneten reellen $ c [mm] \in \IR [/mm] $.

Du hast hingegen eine neue Funktion $ h(x) := (t-2)f(t) + c $ gebildet mit $ c = 0 $.

Viele Grüße,
ChopSuey

Bezug
                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:36 Mi 22.05.2013
Autor: sMaus

Aufgabe 1
Hallo ChopSuey,

vielen Dank. Alles klar ich nehme mir die Zeit und schau dort vorbei. Kannst du mir vielleicht einen tipp geben, wie ich bei dieser Aufgbabe g(t) bzw. die forrm finden kann=?

Aufgabe 2
Schreiben Sie die Polynome thoch5 +t+1
in der Form (t-2)g(t)+c mit einer reelen Zahl c

Ich habe einfach (t-2)(thoch5 +t+1) = t hcoh6 -2thoch5+t²-2-2 ist das richtig?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                        
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:42 Mi 22.05.2013
Autor: sMaus

Also ich würde:

[mm] t^5+t+1 [/mm] = [mm] (t^5+t)+1 [/mm] = [mm] (t-2)(t^5/t-2 [/mm] + t/t-2)+1 = [mm] (t-2)(t^4+2t^3 +2t^2+2t+2)+1 [/mm]

was hälts du davon?

Bezug
                                
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 02:13 Mi 22.05.2013
Autor: meili

Hallo sMaus,

> Also ich würde:
>  
> [mm]t^5+t+1[/mm] = [mm](t^5+t)+1[/mm] = [mm](t-2)(t^5/t-2[/mm] + t/t-2)+1 =
> [mm](t-2)(t^4+2t^3 +2t^2+2t+2)+1[/mm]
>
> was hälts du davon?

Stimmt noch nicht, denn  [mm](t-2)(t^4+2t^3 +2t^2+2t+2)+1[/mm]  =
[mm] $t^5+2t^4+2t^3+2t^2+2t-2t^4-4t^3-4t^2-4t-4 [/mm] +1= $
[mm] $t^5-2t^3-2t^2-2t-3 \not= t^5+t+1$ [/mm]

Aber mit den [mm] $t^4$ [/mm] klappt es schon.
Wie können auch die [mm] $t^3$ [/mm] und [mm] $t^2$ [/mm] verschwinden?
Und nur ein t übrig bleiben?
Das c musst Du so wählen, dass noch +1 am Schluss bleibt.

Gruß
meili

Bezug
                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 00:43 Mi 22.05.2013
Autor: ChopSuey

Hallo,

> Hallo ChopSuey,
>  
> vielen Dank. Alles klar ich nehme mir die Zeit und schau
> dort vorbei. Kannst du mir vielleicht einen tipp geben, wie
> ich bei dieser Aufgbabe g(t) bzw. die forrm finden kann=?

Multipliziere $ f(t) = (t-2)g(t) + c $ aus und wirf nochmal einen Blick auf $ f(t) = [mm] t^5+t+1 [/mm] $, wie muss $ g(t) $ und $ c [mm] \in \IR [/mm] $ dann aussehen, damit die beiden Funktionen gleich sind?

Viele Grüße
ChopSuey

Bezug
                                
Bezug
Polynome: Ausklammern
Status: (Frage) beantwortet Status 
Datum: 00:58 Mi 22.05.2013
Autor: sMaus

Aufgabe
Also du meinst:

[mm] t^5+t+1 [/mm] = (t-2)g(t)+c

[mm] t^5+t+1 [/mm] = tg(t)-2 g(t) +c
und jetzt anschauen?? da komm ich nicht drauf?

oder ist g(t) = ( [mm] t^5/t-2 [/mm] ) + (t/t-2)   ? was soll ich mit dem c tun?

Also wie sehe das denn dann saus?

Bezug
                                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 02:28 Mi 22.05.2013
Autor: meili

Hallo sMaus,

probier es doch einmal mit MBPolynomdivision:
[mm] $(t^5+t+1):(t-2) [/mm] = g(t)$ + Rest

Wenn Du dann, ohne den Rest zu beachten, das Polynom, das Du durch diese
Division erhältst, wieder mit (t-2) multipliziertst, siehst Du, wie Du c wählen musst,
damit (t-2)g(t)+c wieder [mm] $t^5+t+1$ [/mm] ergibt.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]