www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Polynome
Polynome < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome: Fundamentalsatz der Algebra
Status: (Frage) beantwortet Status 
Datum: 15:32 So 09.12.2007
Autor: honigbaer

Aufgabe
Sei n [mm] \in \IN [/mm] und p [mm] \in \IR[x] [/mm] ein Polynom vom Grad n. Sei [mm] z_0 \in \IC [/mm] mit [mm] p(z_0)=0. [/mm] Zeigen Sie, dass [mm] p(z_{0}^{-})=0 [/mm] gilt. (mit [mm] {z_0}^- [/mm] ist die konjugiert komplexe Zahl von [mm] z_0 [/mm] gemeint)
Benutzen Sie dies und den Fundamentalsatz der Algebra um zu zeigen, dass es m [mm] \in \IN [/mm] und Polynome [mm] q_1, q_2, [/mm] ..., [mm] q_m \in \IR[x] [/mm] gibt, die alle den Grad 1 oder 2 haben, so dass p(x) = [mm] \produkt_{k=1}^{m}q_k(x) [/mm] für alle x [mm] \in \IR. [/mm]

Hallo.

Ich habe einige Problem mit dieser Aufgabe.
Ich habe also ein reelles Polynom p gegeben und weiß, dass [mm] p(z_0) [/mm] = 0 ist für [mm] z_0 \in \IC [/mm] gilt. Wie kann ich damit aber jetzt auf [mm] p(z_{0}^{-}) [/mm] schließen.

Logischer Weise gilt ja das aufgestellte, aber ich habe überhaupt keine Idee, wie man das formal beweisen kann.

Ich tippe intuitiv auf vollständige Induktion, aber irgendwie habe ich dafür auch keinen Ansatz.

Über einige Tipps würde ich mich sehr freuen.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 So 09.12.2007
Autor: max3000

Hi.

Der Ansatz hierzu ist, dass man Polynome in Linearfaktoren zerlegen kann, und zwar k Stück, wenn es k reelle Nullstellen gibt. daraus folgen dann n-k komplexe Nullstellen, wobei für 2 Nullstellen ein quadratischer Faktor übrig bleibt. Also folgendermaßen

[mm] p(z)=\produkt_{i=1}^{k}(z-z_i)\produkt_{i=1}^{(n-k)/2}(z^2+p_i*z+q_i) [/mm]

In dem erstem Produkt stehen jetzt die reellen Nullstellen, im 2. die komplexen.

Du musst dir im klaren sein, dass [mm] p_i [/mm] und [mm] q_i [/mm] reell sind.
Jetzt kannst du für die quadratischen Faktoren die Lösungsformel anwenden. Sei [mm] p=p_1 [/mm] und [mm] q=q_1 [/mm]

[mm] z_{k+1,k+2}=-\bruch{p}{2}\pm\wurzel{\bruch{p^2}{4}-q} [/mm]

Dabei sei [mm] \bruch{p^2}{4}-q<0, [/mm] da sonst [mm] z_{k+1} [/mm] und [mm] z_{k+2} [/mm] reell wären.
Wenn du von einer negativen Zahl eine Quadratwurzel ziehst, kommt eine komplexe Zahl raus, die keinen Realteil besitzt. Das solltest du hier noch zeigen (wende dazu die Exponentialdarstellung komplexer Zahlen an). Definiere nun

[mm] a:=-\bruch{p}{2} [/mm] mit Im(b)=0 (klar, da p reell)
[mm] b:=\wurzel{\bruch{p^2}{4}-q}, [/mm] mit Re(b)=0.

Jetzt folgt [mm] z_{k,k+1}=a\pm [/mm] b, wobei
[mm] z_{k+1}=a+b [/mm] und [mm] z_{k+2}=a-b=\overline{z_{k+1}}. [/mm]

Soweit verstanden?
Gruß
Max



Bezug
                
Bezug
Polynome: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 So 09.12.2007
Autor: max3000

Sorry. Ich hab hier die Indizes ein bisschen durcheinander geworfen.

Die 2 komplexen Nullstellen sind [mm] z_{k+1} [/mm] und [mm] z_{k+2}. [/mm]
Die Laufindizes des 2. Produktes sind auch nicht ganz exakt.
Ich denke man versteht trotzdem was gemeint ist.

Bezug
                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 So 09.12.2007
Autor: honigbaer

Hallo.

Danke für die rasche Antwort. Wenn ich das alles so lese, klingt es weitestgehend logisch, aber ich würde darauf nie kommen...

Ich würde aber, bevor ich mit der Hauptaufgabe befasse, erstmal die erste Teilaufgabe machen bzw. verstehen.

Sei [mm] z_0 \in \IC [/mm] mit [mm] p(z_0) [/mm] = 0. Warum gilt dann [mm] p(z_{0}^{-}) [/mm] = 0? Wieso kann ich eine Aussage darüber machen?

Bezug
                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 So 09.12.2007
Autor: max3000

Das [mm] z_0 [/mm] ist ja in meinem Beweis das [mm] z_{k+1} [/mm] und das ist eine Nullstelle. [mm] z_{k+2} [/mm] ist gerade [mm] \overline{z_{k+1}} [/mm] und das ist auch eine Nullstelle.

Bezug
                                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 So 09.12.2007
Autor: honigbaer

Hmmmh.

Dann habe ich das wohl doch noch nicht so richtig verstanden. Könntest du dann in deinem ursprungspost doch noch einmal die Idizenz korrigieren, vielleicht wird es mir dann klarer...

Bezug
                                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 So 09.12.2007
Autor: max3000

Hab alles abgeändert.

Nochmal zusammengefasst:

es gibt k reelle Nullstellen [mm] z_1,...z_k [/mm]
Dann gibt es noch n-k komplexe Nullstellen [mm] z_{k+1},...,z_n [/mm]

hier sei [mm] z_0=z_{k+1} [/mm] in deinem Beispiel.
Mit dieser Lösungsformelgibt es eine Darstellung
[mm] \underbrace{-p/2}_{=Re(z_0)}+\underbrace{\wurzel{p/4-q}}_{=Im(z_0)}. [/mm]

Dass der erste Teil reell ist ist klar. Das der 2. keinen Realteil hat musst du zeigen. laut lösungsformel ist aber auch

[mm] \underbrace{-p/2}_{=Re(z_0)}\underbrace{-\wurzel{p/4-q}}_{=-Im(z_0)} [/mm]

eine Lösung des Polynoms.



Bezug
                                                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 So 09.12.2007
Autor: honigbaer

Super.

Vielen Dank dafür. Jetzt ist mir das soweit eigentlich auch klar. Ich werde das jetzt morgen noch einmal in meinen eigenen Worten niederschreiben, aber das sollte jetzt nicht mehr ein allzu großen Problem sein.

Mein einziges Problem ist nun die Sache mit der Hauptaufgabe dieser Aufgabe... Anschaulich ist es ja klar, dass ich beim Bilden des Produktes von Polynomen jedes beliebige Polynom darstellen kann, aber wie beweise ich das nun formal.

Stichwort: vollständige Induktion?!?

Bezug
                                                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 So 09.12.2007
Autor: max3000

Ich glaube bei dem 2. Teil der Aufgabe bekommen wir ein Problem.
Wir haben ja die Aussage des 2. Teils genutzt um den 1. Teil zu beweisen.
Darum war das womöglich der falsche Ansatz.
Jetzt bin ich echt überfragt.

Bezug
                                                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 00:30 Mo 10.12.2007
Autor: rainerS

Hallo,

du brauchst keine Induktion, wir haben ja nur endlich viele Linearfaktoren. Sortiere diese in reelle und komplexe.

Viele Grüße
   Rainer

Bezug
                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Mo 10.12.2007
Autor: rainerS

Hallo!

> Sei [mm]z_0 \in \IC[/mm] mit [mm]p(z_0)[/mm] = 0. Warum gilt dann
> [mm]p(\overline{z_{0}})[/mm] = 0? Wieso kann ich eine Aussage darüber
> machen?

Das folgt sofort aus der Definition des Polynoms:

[mm] p(z_0) = \summe_{i=0}^{n} a_i z_0^i[/mm], mit reellen Koeffizienten [mm]a_i[/mm].

Da alle Koeffizienten reell sind, gilt [mm]\overline{p(z_0)} = p(\overline{z_{0}})[/mm].

Also treten alle nicht reellen Nullstellen als Paare konjugiert komplexer Zahlen auf.

max3000 hat das Pferd von hinten aufgezäumt: Für den zweiten Teil der Aufgabe brauchst du nur diese Aussage und den Fundamentalsatz der Algebra: sortiere alle Linearfaktoren danach, ob sie reell sind oder nicht und fasse die Paare zueinander konjugiert komplexer Linearfaktoren zusammen.

Viele Grüße
   Rainer


Bezug
                                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:27 Mo 10.12.2007
Autor: honigbaer

Hallo.

Also den ersten Teil der Aufgabe habe ich nun verstanden und ist ja eigentlich soweit auch logisch, denn [mm] z_0 [/mm] * [mm] \overline{z_{0}} [/mm] = Re(z).

Okay. Das haben wir schon einmal.
Den anderen Teil der Aufgabe habe ich leider noch nicht verstanden. Es ist ja so, dass dort eigentlich gar keine komplexen Zahlen mehr auftauchen...

Ich weiß auch noch nicht, wie ich die sortieren soll...

Vielleicht könntest du mich noch mal auf den rechten Weg bringen.

Bezug
                                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Mo 10.12.2007
Autor: rainerS

Hallo!

> Hallo.
>  
> Also den ersten Teil der Aufgabe habe ich nun verstanden
> und ist ja eigentlich soweit auch logisch, denn [mm]z_0[/mm] *
> [mm]\overline{z_{0}}[/mm] = Re(z).

Nein. [mm]z_0 * \overline{z_{0}} = |z_0|^2[/mm].

Du meinst: [mm]z_0 \red{+} \overline{z_{0}} = \red{2} \mathop{\mathrm{Re}} z[/mm].

> Okay. Das haben wir schon einmal.
>  Den anderen Teil der Aufgabe habe ich leider noch nicht
> verstanden. Es ist ja so, dass dort eigentlich gar keine
> komplexen Zahlen mehr auftauchen...

Ja. Was ist [mm](z-z_0)*(z-\overline{z_0})[/mm] ?

Viele Grüße
   Rainer

Bezug
                                                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 Mo 10.12.2007
Autor: honigbaer

Hi.

Seien z, [mm] z_0 \in \IC [/mm] mit z = a +bi und [mm] z_0 [/mm] = c + di. Dann gilt:
(z - [mm] z_0)(z [/mm] - [mm] \overline{z_0}) [/mm]
= ((a + bi) - (c + di)) ((a + bi) - (c - di))
= ((a - c) + (b - d)i)  ((a - c) - (b + d)i)
= ((a - [mm] c)^2 [/mm] - (b - d)(b + d)) + ((a - c)(b + d) + ((a - c)(b - d))i)
= [mm] a^2 [/mm] - 2ac + [mm] c^2 [/mm] + [mm] d^2 [/mm] - 2ac - ab + ad + ((a - c)(b - d))i
= [mm] a^2 [/mm] - [mm] b^2 [/mm] + [mm] c^2 [/mm] + [mm] d^2 [/mm] - 2ac - ab + ad + (ab - ad - cb + cd)i


Aber wie hilft mir das nun weiter?

Bezug
                                                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Di 11.12.2007
Autor: rainerS

Hallo!

Warum multiplizierst du nicht einfach mal aus?

[mm] (z - z_0)(z - \overline{z_0}) = z^2 - z*z_0 -z * \overline{z_0} + z_0 * \overline{z_0} = z^2 -2z*\mathop{\mathrm{Re}} z_0 + |z_0|^2 \in \IR[z][/mm].

Viele Grüße
   Rainer

Bezug
                                                                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:41 Mi 12.12.2007
Autor: honigbaer

Hallo.

So kann man sich natürlich viel Arbeit sparen ;)
Das Problem ist nun aber, wie mir dieses weiterhelfen soll. Wie kann ich jetzt auf diese [mm] q_1,q_2,...,q_m [/mm] schließen und das ich durch ein Produkt dieser qs Polynome beliebigen Grades erstellen kann...

Irgendwie steige ich da noch nicht so recht durch...

Bezug
                                                                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Mi 12.12.2007
Autor: rainerS

Hallo!

> Hallo.
>  
> So kann man sich natürlich viel Arbeit sparen ;)
>  Das Problem ist nun aber, wie mir dieses weiterhelfen
> soll. Wie kann ich jetzt auf diese [mm]q_1,q_2,...,q_m[/mm]
> schließen und das ich durch ein Produkt dieser qs Polynome
> beliebigen Grades erstellen kann...

Was sagt der Fundamentalsatz der Algebra für dein Polynom?

Viele Grüße
    Rainer

Bezug
                                                                                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:25 Mi 12.12.2007
Autor: honigbaer

Hallo.

Der Fundamentalsatz der Algebra sagt ja aus, dass ein Polynom vom Grad n [mm] \in \IN [/mm] genau n Nullstellen [mm] z_1,...,z_n \in \IC [/mm] besitzt. Außerdem zerfällt das Polynom in n Linearfaktoren.

Das ist ja vom Prinzip sehr ähnlich zu dieser Aufgabe, aber einen richtigen Zusammenhang kann ich noch nicht herstellen.

Bezug
                                                                                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Mi 12.12.2007
Autor: rainerS

Hallo!

> Hallo.
>  
> Der Fundamentalsatz der Algebra sagt ja aus, dass ein
> Polynom vom Grad n [mm]\in \IN[/mm] genau n Nullstellen [mm]z_1,...,z_n \in \IC[/mm]
> besitzt. Außerdem zerfällt das Polynom in n
> Linearfaktoren.

Du hast außerdem in Teil a deiner Aufgabe festgestellt, dass die nichtreellen Nullstellen in Paaren zueinander konjugiert komplexer Zahlen auftreten. Außerdem weisst du jetzt, was das Produkt der Linearfaktoren zweier zueinander konjugiert komplexer Nullstellen ist.

Sortiere die Linearfaktoren deines Polynoms nach reell/nichtreell und fasse zusammen.

Viele Grüße
   Rainer

Bezug
                                                                                                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Mi 12.12.2007
Autor: honigbaer

Hallo.

Ich stehe noch ein wenig auf dem Schlauch, wie kann ich denn die Nullstellen nun nach reellen und komplexen Nullstellen umsortieren.

Ich weiß doch gar nicht wie die Aussehen...

Bezug
                                                                                                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 Mi 12.12.2007
Autor: rainerS

Hallo!

> Hallo.
>  
> Ich stehe noch ein wenig auf dem Schlauch, wie kann ich
> denn die Nullstellen nun nach reellen und komplexen
> Nullstellen umsortieren.
>  
> Ich weiß doch gar nicht wie die Aussehen...

Wozu musst du das wissen? Das Polynom p(x) hat Grad n. Angenommen, es habe m reelle Nullstellen ([mm]0\le m\le n[/mm]) und (n-m) komplexe Nullstellen. Aus Teil a der Aufgabe folgt insbesondere, dass (n-m) gerade ist. Sei [mm]l=\bruch{n-m}{2}[/mm]. Dann sortiere die Linearfaktoren so um, dass [mm]x_{n-m+1},\dots,x_n[/mm] die reellen Nullstellen sind, und die zueinander konjugiert komplexen Nullstellen jeweils [mm]x_{2k-1},x_{2k}[/mm] mit [mm]x_{2k}=\overline{x_{2k-1}}[/mm] für [mm]k=1,\dots,l[/mm].

[mm] p(x) = \produkt_{i=1}^{n} (x - x_i) = \produkt_{k=1}^{l} (x - x_{2k-1})(x-x_{2k}) * \produkt_{i=n-m+1}^n (x-x_i)[/mm]

Viele Grüße
   Rainer

Bezug
                                                                                                                
Bezug
Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Mi 12.12.2007
Autor: honigbaer

Okay.

Jetzt habe ich also eine Darstellung für mein Polynom p(z) durch seine Nullstellen. Ich habe also das Polynom p(z) als Linearfaktoren dargestellt.

Aber wie kann ich jetzt auf die [mm] q_1,q_2,...,q_m [/mm] mit [mm] m\in\IN [/mm] schließen? Setze vielleicht [mm] q_1 [/mm] = (z - 1. Nullstelle), [mm] q_2 [/mm] = (z - 2. Nullstelle), ...
Dann kann ich ja nur m Nullstellen abdecken, das reicht, weil ich ja nur die rellen Betrachten muss, oder?

Aber sind die [mm] q_1,...,q_m [/mm] dann vom Grad 1 oder 2?

Viele Grüße und vielen Dank für deine Geduld.

Bezug
                                                                                                                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mi 12.12.2007
Autor: rainerS

Hallo!

> Okay.
>  
> Jetzt habe ich also eine Darstellung für mein Polynom p(z)
> durch seine Nullstellen. Ich habe also das Polynom p(z) als
> Linearfaktoren dargestellt.
>  
> Aber wie kann ich jetzt auf die [mm]q_1,q_2,...,q_m[/mm] mit [mm]m\in\IN[/mm]
> schließen? Setze vielleicht [mm]q_1[/mm] = (z - 1. Nullstelle), [mm]q_2[/mm]
> = (z - 2. Nullstelle), ...
>  Dann kann ich ja nur m Nullstellen abdecken, das reicht,
> weil ich ja nur die rellen Betrachten muss, oder?
>  
> Aber sind die [mm]q_1,...,q_m[/mm] dann vom Grad 1 oder 2?

Ich habe es dir doch hingeschrieben: das erste Produkt geht über Polynome 2. Grades mit reellen Koeffizienten, das zweite über lineare Polynomemit reellen Koeffizienten.

Viele Grüße
   Rainer

Bezug
                                                                                                                                
Bezug
Polynome: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:29 Mi 12.12.2007
Autor: honigbaer

Hallo.

Dann ist das also schon bereits der komplette Beweis, oder wie sehe ich das?

Was ist denn jetzt eigentlich noch zu zeigen?

Bezug
                                                                                                                                        
Bezug
Polynome: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:54 Fr 14.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]