www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Polynom hermitescher Matrizen
Polynom hermitescher Matrizen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom hermitescher Matrizen: Idee
Status: (Frage) beantwortet Status 
Datum: 13:18 Sa 02.06.2012
Autor: Orchis

Aufgabe
Sei A (mit komplexen Einträgen) eine hermitesche Matrix. Wir nehmen an, es existiert ein m [mm] \in \IZ>0 [/mm] mit [mm] X^m=I [/mm] (I Einheitsmatrix).
Zeigen Sie: X³-2X²-X+2I=0.

Hallo zusammen :),
ich habe nun einiges an Aufgaben zu Eigenwerten und dergleichen zur Übung bearbeitet, doch bei dieser finde ich noch nicht einmal einen Ansatz.
Scheinbar soll man hier zeigen, dass das charakteristische Polynom einer Matrix, deren Einträge wiederum Matrizen sind, 0 ergibt, aber ich wüsste nicht wie man das zeigen kann.
Vielen Dank schon mal im Voraus!!!


        
Bezug
Polynom hermitescher Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Sa 02.06.2012
Autor: Schadowmaster

moin,

Um dein Problem zu lösen würde ich dir folgende Schritte empfehlen:
1. Faktorisiere dein Polynom.
2. Grabe ein bisschen Wissen über hermitesche Matrizen aus, insbesondere: jede hermitesche Matrix ist diagonalisierbar und hat nur reelle Eigenwerte.
3. Was kannst du aus der Existenz deines $m$ für die Eigenwerte folgern?

Sollte es noch an einer Stelle hängen kannst du immer gern nachfragen. ;)

lg

Schadowmaster



Bezug
                
Bezug
Polynom hermitescher Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Sa 02.06.2012
Autor: Orchis

Ok, vielen lieben Dank erstmal!
Gut mit deinem Ansatz habe ich das Polynom auf die Form
(X-I)(X+I)(X-2I) gebracht. So weit so gut.
Was ich aber beim besten Willen nicht verstehe: Inwiefern kann man denn etwas über die diagonalisierte Matrix von X aussagen?
Für mich sieht das jetzt so aus, als könne man die Eigenwerte I,-I,2I einer Matrix A ablesen, wenn A diagonalisiert diese Form hat:
A:= [mm] \pmat{(X-I) & 0 & 0 \\ 0 & (X+I) & 0 \\ 0 & 0 & (X-2I)}, [/mm]
d.h. man müsste also zeigen, dass det(A)=0 ist...
Du siehst, das hab ich noch nicht verstanden :D. Wäre toll, wenn du mir da noch was unter die Arme greifen könntest
Lg Orchis

Bezug
                        
Bezug
Polynom hermitescher Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Sa 02.06.2012
Autor: Schadowmaster

Ah, Moment.
Zuerst mal meinte ich das Polynom, bevor eingesetzt wird.
Also die Faktorisierung wäre $(x-1)*(x+1)*(x-2)$ als ganzzahliges Polynom; in dieses wird danach die Matrix eingesetzt.
Nun nimm mal an, dass deine hermitesche Matrix die Form $A = [mm] BDB^{-1}$ [/mm] hat für eine Diagonalmatrix $D$ und eine invertierbare Matrix $B$.
Nun setzt mal $BDB$ in das Polynom (nennen wir es mal $p$) ein und zeige, dass $p(A) = 0 [mm] \gdw [/mm] p(D) = 0$.
Betrachtest du dir nun das faktorisierte Polynom so überleg dir mal, wieso da $0$ rauskommt, wenn du $D$ einsetzt.
Hierfür kannst du zum einen benutzen wie man eine Diagonalmatrix leicht potenzieren, addieren, etc. kann und du kannst verwenden, dass die Eigenwerte (und das sind ja gerade die Diagonaleinträge von $D$) aufgrund der Existenz deines $m$ eine ganz besondere Gestalt haben müssen.


lg

Schadowmaster

Bezug
                                
Bezug
Polynom hermitescher Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Sa 02.06.2012
Autor: Orchis

Ok, wenn ich also p(D)=(D-I)*(D+I)*(D-2I) betrachte , dann müsste doch auch gelten [mm] D^m [/mm] = I und damit könnten die Eigenwerte (, da sie nur reel sind) ja eigentlich auch nur vom Betrag 1 haben. Daraus würde resultieren, dass entweder bei (D-I) oder bei (D+I) die Nullmatrix herauskommen würde und somit auch p(D) = 0 wäre.
Ist das so der richtige Gedankengang?
(Entschuldige, dass ich da etwas langsamer bin, aber mir fällt Lina immer etwas schwerer)

Bezug
                                        
Bezug
Polynom hermitescher Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Sa 02.06.2012
Autor: Schadowmaster


> Ok, wenn ich also p(D)=(D-I)*(D+I)*(D-2I) betrachte , dann
> müsste doch auch gelten [mm]D^m[/mm] = I und damit könnten die
> Eigenwerte (, da sie nur reel sind) ja eigentlich auch nur
> vom Betrag 1 haben. Daraus würde resultieren, dass
> entweder bei (D-I) oder bei (D+I) die Nullmatrix
> herauskommen würde und somit auch p(D) = 0 wäre.
> Ist das so der richtige Gedankengang?
>  (Entschuldige, dass ich da etwas langsamer bin, aber mir
> fällt Lina immer etwas schwerer)

Das ist schon fast perfekt.
Allerdings könnten sowohl $1$ als auch $-1$ gleichzeitig als Eigenwerte vorkommen, zu dem Fall müsstest du noch kurz 1-2 Worte verlieren.

lg

Schadowmaster


Bezug
                                                
Bezug
Polynom hermitescher Matrizen: Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Sa 02.06.2012
Autor: Orchis

Stimmt schon. Das ist dann ja eigentlich egal (schwer zu erklären), denn der Teil der Hauptdiagonalen, dessen Einträge bei (D-I) nicht zu Null werden, werden es aber dann bei (D+I) und deren Produkt wird dann (weil bei der Matrizenmultiplikation keine Zahlen [mm] \not= [/mm] 0 aufeinandertreffen) eben Null.

Also, jetzt werde ich das noch schön in Text einpacken!
Nochmals vielen Dank für die tatkräftige Hilfe!!! :)
LG
Orchis

Bezug
        
Bezug
Polynom hermitescher Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Sa 02.06.2012
Autor: fred97

1. X hat nur reelle Eigenwerte.

2. Wegen [mm] X^m=I, [/mm] gilt für einen Eigenwert [mm] \lambda [/mm] von X: [mm] \lambda^m=1. [/mm]

Damit ist [mm] \lambda= \pm [/mm] 1.

3. Zeige: kern(X-I)= [mm] Kern((X-I)^2)= Kern((X-I)^3)= [/mm] ....

Ebenso: kern(X+I)= [mm] Kern((X+I)^2)= Kern((X+I)^3)= [/mm] ....

4. Aus 2. und 3. folgt: (X-I)(X+I)=0

FRED


Bezug
                
Bezug
Polynom hermitescher Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 Sa 02.06.2012
Autor: Orchis

Hallo, vielen Dank für diese etwas andere Beweisskizze! :)
Ich bin nun den Weg von Shadowmaster gegangen, versuch mich aber auch mal an Ihrer Herangehensweise. Wenn ich es noch schaffen sollte, stell ich dann meine Lösung mal hier ins Forum.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]