www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Polynom ausklammern
Polynom ausklammern < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom ausklammern: Frage
Status: (Frage) beantwortet Status 
Datum: 19:51 Di 19.07.2005
Autor: toby-ffo

Hallo,

ich schreibe morgen meine Matheprüfung und habe bei der Vorbereitung die Eigenwertberechnung eienr Matrix vergessen. Auf de.Wikipedia.org gibt es dazu []Eigenwert, dessen Zahlenbeispiel ich durchgerechnet habe. Ich komme aber nur bis zu der Zeile:

- [mm] \lambda³+2 \lambda²+4 \lambda-8 [/mm]

Wie komme ich auf die Zeile:

-( [mm] \lambda-2)( \lambda-2)( \lambda+2) [/mm]

Andersrum wäre es ja kein Problem, aber in die Richtung hab ich's nicht mehr drauf...

Danke im vorraus. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gruß, toby

        
Bezug
Polynom ausklammern: Polynomdivision
Status: (Antwort) fertig Status 
Datum: 20:10 Di 19.07.2005
Autor: Loddar

Hallo Toby,

[willkommenmr] !!


Das Stichwort bei dieser Faktorisierung heißt MBPolynomdivision !!


Ich denke mal, es soll heißen:   $- [mm] \lambda^3+2\lambda^2+4 \lambda-8 [/mm] \ [mm] \red{= \ 0}$ [/mm]

Bei höhergradigen Potenzen als 2 sollte man zunächst versuchen, durch gezieltes Erraten / Probieren eine der Nullstellen zu ermitteln.

Wenn es ganzzahlige Nullstellen gibt, bieten sich dafür immer die Teiler des Absolutgliedes an, hier: $-8_$ .

Wir probieren also folgende Zahlen mal durch:
[mm] $\pm1$ [/mm]   /   [mm] $\pm2$ [/mm]   /   [mm] $\pm4$ [/mm]   /   [mm] $\pm8$ [/mm] .


Und siehe da - z.B. bei [mm] $\lambda_1 [/mm] \ = \ +2$ finden wir eine Nullstellen.


Nun führen wir eine MBPolynomdivision durch, indem wir unser Polynom durch den Term [mm] $\left(\lambda - \lambda_1\right)$ [/mm] dividieren:

$- [mm] \lambda^3+2\lambda^2+4 \lambda-8 [/mm] \ = \ - [mm] \left(\lambda^3-2\lambda^2-4 \lambda+8\right)$ [/mm]


$- [mm] \left(\lambda^3-2\lambda^2-4 \lambda+8\right) [/mm] : [mm] (\lambda [/mm] - 2) \ = \ - \ [mm] \left[ \ ... \ \right]$ [/mm]


Hier sollte dann ein quadratisches Polynom anstelle des [mm] $\left[ \ ... \ \right]$ [/mm] entstehen, bei dem Du dann z.B. mit der MBp/q-Formel die weiteren Nullstellen berechnen und die entsprechenden Linearfaktoren [mm] $\left(\lambda - \lambda_k\right)$ [/mm] ermitteln kannst.


Und, alle Klarheiten beseitigt?

Gruß
Loddar


Bezug
                
Bezug
Polynom ausklammern: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Di 19.07.2005
Autor: toby-ffo

Vielen dank für die schnelle Antwort, es klingelt im Kopf!

Werd das nochmal durchrechnen, sollte aber keine Probleme mehr geben...

Gruß, toby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]