www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Polynom 2. Grades bestimmen.
Polynom 2. Grades bestimmen. < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom 2. Grades bestimmen.: Der richtige Weg?
Status: (Frage) beantwortet Status 
Datum: 14:20 Mo 10.10.2011
Autor: PeterLee

Aufgabe
Welches Polynom zweiten Grades hat mit der Sinusfunktion f(x) = sin(x), x [mm] \in [0,\pi [/mm] ], den Scheitenpunkt und die Schnittpunkte mit der x Achse gemeinsam?

Okay... ich hätte hier meine Lösungsansatz, doch recht schnell drehe ich mich im Kreis... vielleicht weiss ja jemand einen Ausweg.

f(x) = sin(x)

Nst: [mm] x_{1}: [/mm] (0,0), [mm] x_{2}: (\pi, [/mm] 0), Scheitelpunkt S: [mm] (\pi/2, [/mm] 1)

Nun habe das Polynom 2. Grades aufgestellt:

y= [mm] ax^2 [/mm] + bx+c

Einsetzen erste NST:

0= c --> neues Polynom : y= [mm] ax^2+bx [/mm]

So nun habe ich die 2. Nullstelle eingesetzt --> Ergebnis:

0= [mm] \pi^2*a [/mm] + [mm] \pi [/mm] *b

Wie muss ich denn nun weitermachen?
Ich weiss, dass der Scheitelpunkt der selbe sein muss und dass der Scheitelpunkt ein Extremum (Max) sein muss.

Also:

y´(x) = 2ax+b --> x= - [mm] \bruch{b}{2a} [/mm]

Aber jetzt komme ich nicht mehr weiter... ich hoffe doch es ist nur eine Denkblockade und kein schwerer Fehler ;)

        
Bezug
Polynom 2. Grades bestimmen.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Mo 10.10.2011
Autor: notinX

Hallo,

> Welches Polynom zweiten Grades hat mit der Sinusfunktion
> f(x) = sin(x), x [mm]\in [0,\pi[/mm] ], den Scheitenpunkt und die
> Schnittpunkte mit der x Achse gemeinsam?
>  Okay... ich hätte hier meine Lösungsansatz, doch recht
> schnell drehe ich mich im Kreis... vielleicht weiss ja
> jemand einen Ausweg.
>  
> f(x) = sin(x)
>
> Nst: [mm]x_{1}:[/mm] (0,0), [mm]x_{2}: (\pi,[/mm] 0), Scheitelpunkt S:
> [mm](\pi/2,[/mm] 1)

Richtig.

>  
> Nun habe das Polynom 2. Grades aufgestellt:
>  
> y= [mm]ax^2[/mm] + bx+c
>  
> Einsetzen erste NST:
>
> 0= c --> neues Polynom : y= [mm]ax^2+bx[/mm]
>  
> So nun habe ich die 2. Nullstelle eingesetzt --> Ergebnis:
>  
> 0= [mm]\pi^2*a[/mm] + [mm]\pi[/mm] *b
>  
> Wie muss ich denn nun weitermachen?
> Ich weiss, dass der Scheitelpunkt der selbe sein muss und
> dass der Scheitelpunkt ein Extremum (Max) sein muss.

Auch alles richtig.

>  
> Also:
>  
> y´(x) = 2ax+b --> x= - [mm]\bruch{b}{2a}[/mm]
>  
> Aber jetzt komme ich nicht mehr weiter... ich hoffe doch es
> ist nur eine Denkblockade und kein schwerer Fehler ;)

Du musst für x nur noch die entsprechende Stelle einsetzen, an der die Steigung null sein soll. Dann bekommst Du eine zweite Gleichung für zwei Unbekannte.

Gruß,

notinX

Bezug
                
Bezug
Polynom 2. Grades bestimmen.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mo 10.10.2011
Autor: PeterLee

Okay...
der Punkt wo die Steigung 0 ist ist ja die Ableitung= 0

Also einsetzen in die Ableitung:

0= 2a *- [mm] \bruch{b}{2a}+b [/mm]

Dann kann man ja 2a kürzen und es bleibt 0= -b + b und das gibt 0.

Ehrlichgesagt war ich vorher schon soweit, aber das kann ja nicht sein, oder?

Eigentlich müsste ich eine Gleichung mit den Unbekannten a und b rausbekommen, um dort dann in einnem 2er Gleicungssystem a und b zu berechnen?

Bezug
                        
Bezug
Polynom 2. Grades bestimmen.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Mo 10.10.2011
Autor: notinX


> Okay...
> der Punkt wo die Steigung 0 ist ist ja die Ableitung= 0
>
> Also einsetzen in die Ableitung:
>
> 0= 2a *- [mm]\bruch{b}{2a}+b[/mm]
>  
> Dann kann man ja 2a kürzen und es bleibt 0= -b + b und das
> gibt 0.
>  
> Ehrlichgesagt war ich vorher schon soweit, aber das kann ja
> nicht sein, oder?
>
> Eigentlich müsste ich eine Gleichung mit den Unbekannten a
> und b rausbekommen, um dort dann in einnem 2er
> Gleicungssystem a und b zu berechnen?

Setze in diese Gleichung:

>  
> y´(x) = 2ax+b --> x= - $ [mm] \bruch{b}{2a} [/mm] $
>  

den entsprechenden x-Wert ein, an dem die Steigung =0 sein soll (heißer Tipp: Der ist nicht 0). Dann bekommst Du auch die gewünschte Gleichung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]