Polygonzugverfahren < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:00 Do 28.05.2009 | Autor: | Firecrow |
Aufgabe | a) Berechnen Sie für die Differentialgleichung
y0(t) = t · y(t)
mit Anfangswert y(0) = 1 und die Schrittweiten h1 = 1/2 , h2 = 1/4 , h3 = 1/8
jeweils eine Näherung an y(1).
b) Lösen Sie die Differentialgleichung aus (a), indem Sie zunächst
vermuten, dass die Lösung y der Differentialgleichung die Gestalt
y(t) = c · exp(g(t)) hat mit einer Konstanten c und einer differenzierbaren
zu suchenden Funktion g (Achtung: Kettenregel!). Wählen Sie c und g(t)
so, dass auch der Anfangswert erfüllt ist. Vergleichen Sie y an der Stelle 1
mit den Näherungen aus (a). |
Kann mir hier vielleicht jamend n Tipp geben. Ich komm mit dem Polygonzuverfahren nicht so recht klar. Ich habe keine Idee wie ich da anfangen soll.
Mfg Fire
|
|
|
|
Rechnen wir's mal für [mm] h_1=0,5 [/mm] zusammen durch:
Startwert ist y(0)=1.
[mm]y(1*h_1)=y(0*h_1) + h_1 * f(0*h_1; y(0*h_1)) \gdw[/mm]
[mm]y(0,5)=y(0) + 0,5 * f(0; y(0)) \gdw[/mm]
[mm]y(0,5)=1 + 0,5 * 0 * 1 = 1[/mm]
[mm]y(2*h_1)=y(1*h_1) + h_1 * f(1*h_1; y(1*h_1)) \gdw[/mm]
[mm]y(1)=y(0,5) + 0,5 * f(0,5 ; y(0,5)) \gdw[/mm]
[mm]y(1)=1 + 0,5 * 0,5 * 1 = 1,25[/mm]
Jetzt mach das mal für die anderen Schrittweiten (vielleicht solltest du dabei technische Hilfsmittel verwenden, Excel tut's z.B. schon).
|
|
|
|