www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Polstellen und Asymptoten
Polstellen und Asymptoten < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstellen und Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Mo 03.02.2014
Autor: Idefix_2013

Hallo zusammen,

ich habe eine allgemeine Frage zum Thema Polstelle!

Z.B.: Hat die Funktion [mm] f(x)=\bruch{1}{x^2} [/mm] in [mm] x_{0}=0 [/mm] eine Polstelle?
Ich hab mal irgendwo gehört, dass für eine Polstelle die Grenzwerte für [mm] x\to0+ [/mm] und [mm] x\to0- [/mm] unterschiedlich sein müssen, stimmt das?

Und hat die Funktion [mm] g(x)=(x-2)*e^x [/mm] eine waagrechte Asymptote?

Vielen Dank für die Hilfe!

        
Bezug
Polstellen und Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mo 03.02.2014
Autor: Richie1401

Hi,

> Hallo zusammen,
>  
> ich habe eine allgemeine Frage zum Thema Polstelle!
>  
> Z.B.: Hat die Funktion [mm]f(x)=\bruch{1}{x^2}[/mm] in [mm]x_{0}=0[/mm] eine
> Polstelle?

Ja, hat sie, und zwar ein Pol zweiter Ordnung.

>  Ich hab mal irgendwo gehört, dass für eine Polstelle die
> Grenzwerte für [mm]x\to0+[/mm] und [mm]x\to0-[/mm] unterschiedlich sein

Wo hast du das gehört?

> müssen, stimmt das?

Nein.

Es gibt Polstellen, wo sich das Vorzeichen wechselt aber auch welche ohne Wechsel. Dazu vielleicht einmal dieser Link:

http://www.serlo.org/math/wiki/article/view/polstelle

>  
> Und hat die Funktion [mm]g(x)=(x-2)*e^x[/mm] eine waagrechte
> Asymptote?

Jop. Schau dir dazu einmal den Grenzwert [mm] x\to-\infty [/mm] an.
Für [mm] x\to\infty [/mm] explodiert die Funktion ja geradezu. Das sieht man sicherlich sofort ein.



Bezug
                
Bezug
Polstellen und Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Mo 03.02.2014
Autor: Idefix_2013

Okay, vielen Dank!

Zu g(x): Also spricht man in diesem Fall von einer Asymptote? Weil sie nähert sich ja nur für [mm] x\to-\infty [/mm] an die x-Achse an.

Danke!

Bezug
                        
Bezug
Polstellen und Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Di 04.02.2014
Autor: Valerie20


> Okay, vielen Dank!

>

> Zu g(x): Also spricht man in diesem Fall von einer
> Asymptote? Weil sie nähert sich ja nur für [mm]x\to-\infty[/mm] an
> die x-Achse an.

Nein, so kann man das nicht sagen.
Es gibt sowohl senkrechte als auch waagerechte Asymptoten.

In f(x) ist x=0 eine senkrechte asymptote (Polstelle).
Bei g(x) hast du für x gegen minus unendlich eine waagerechte asymptote bei y=0.

Sieh dir deine Unterlagen nocheinmal genau durch, oder hier:

http://www.poenitz-net.de/Mathematik/4.Funktionen/4.6.S.Rationale%20Funktionen.pdf
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]