Polstelle untersuchen? < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:01 Mo 16.03.2009 | Autor: | Valaina |
Leider konnte ich keinen längeren Titel schreiben, also es geht um folgendes: Bei einer Kurvendiskussion muss ich die Unstetigkeitstellen untersuchen, ob Lücke, Pol- oder Sprungstelle. Mir wurde gesagt, dass ich dazu die beidseitigen Grenzwerte ausrechnen muss. Bei einer Sprungstelle, die es ja nur dann gibt wenn die Funktion abschnittsweise definiert ist, versteh ich das noch, weil das ja zwei verschiedene Rechnungen sind, wenn man sich an die "Schnittstelle" annähert. Bei einer Funktion die aber nur aus einer Funktionsgleichung besteht, stellt sich mir folgende Frage: Ich schreibe zwei mal exakt die gleiche Rechnung auf, da ja links und rechts die gleiche Funktion ist. Ich bekomme zweimal das gleiche Ergebnis: wenn es eine Zahl ist, ist die Unstetigkeitsstelle eindeutig eine Lücke, aber wenn ich [mm] \infty [/mm] rausbekomme, weiß ich noch nicht, ob die Polstelle mit oder ohne Vorzeichenwechsel ist. Als ich meine Lehrerin danach gefragt habe, hat sie mir gesagt, ich soll einfach Werte, die relativ nahe an der Unstetigkeitsstelle liegen, in die Funktion einsetzen und sehe dann daraus, wohin der Graph jeweils geht.
Allerdings hört sich das meiner Meinung nach stark nach "Rumprobieren" und Zufälligkeit an, etwas, dass ich bei Mathe eigentlich ganz und gar nicht mag. Ich möchte wissen: Ist das gängige Praxis, dass man zweimal genau die gleiche Rechnung hinschreibt, kein unbedingt klares Ergebnis rausbekommt und sich dann durch Rumprobieren das Ergebnis zusammenbastelt? Oder gibt es ein eindeutiges Rechenverfahren, das mir die Frau vorenthalten hat?
lg und vielen Dank
Valaina
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:11 Mo 16.03.2009 | Autor: | abakus |
> Leider konnte ich keinen längeren Titel schreiben, also es
> geht um folgendes: Bei einer Kurvendiskussion muss ich die
> Unstetigkeitstellen untersuchen, ob Lücke, Pol- oder
> Sprungstelle. Mir wurde gesagt, dass ich dazu die
> beidseitigen Grenzwerte ausrechnen muss. Bei einer
> Sprungstelle, die es ja nur dann gibt wenn die Funktion
> abschnittsweise definiert ist, versteh ich das noch, weil
> das ja zwei verschiedene Rechnungen sind, wenn man sich an
> die "Schnittstelle" annähert. Bei einer Funktion die aber
> nur aus einer Funktionsgleichung besteht, stellt sich mir
> folgende Frage: Ich schreibe zwei mal exakt die gleiche
> Rechnung auf, da ja links und rechts die gleiche Funktion
> ist. Ich bekomme zweimal das gleiche Ergebnis: wenn es eine
> Zahl ist, ist die Unstetigkeitsstelle eindeutig eine Lücke,
> aber wenn ich [mm]\infty[/mm] rausbekomme, weiß ich noch nicht, ob
> die Polstelle mit oder ohne Vorzeichenwechsel ist. Als ich
> meine Lehrerin danach gefragt habe, hat sie mir gesagt, ich
> soll einfach Werte, die relativ nahe an der
> Unstetigkeitsstelle liegen, in die Funktion einsetzen und
> sehe dann daraus, wohin der Graph jeweils geht.
> Allerdings hört sich das meiner Meinung nach stark nach
> "Rumprobieren" und Zufälligkeit an, etwas, dass ich bei
> Mathe eigentlich ganz und gar nicht mag. Ich möchte wissen:
> Ist das gängige Praxis, dass man zweimal genau die gleiche
> Rechnung hinschreibt, kein unbedingt klares Ergebnis
> rausbekommt und sich dann durch Rumprobieren das Ergebnis
> zusammenbastelt? Oder gibt es ein eindeutiges
> Rechenverfahren, das mir die Frau vorenthalten hat?
Hallo,
"rumprobieren" in der Nähe der Polstelle bedeutet, Funktionswerte an den Stellen [mm] x_p- \epsilon [/mm] und [mm] x_p [/mm] + [mm] \epsilon [/mm] auszurechnen. Aus dem Probieren wird eine exakte Rechnung, wenn du nicht einfach irgendein kleines [mm] \epsilon [/mm] aussuchst, sondern ein beliebiges [mm] \epsilon [/mm] nimmst und für [mm] f(x_p- \epsilon [/mm] ) und [mm] f(x_p+ \epsilon [/mm] ) jeweils ein Grenzwertbetrachtung für [mm] \epsilon [/mm] gegen Null machst (falls ihr Grenzwerte schon hattet).
Gruß Abakus
>
> lg und vielen Dank
> Valaina
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:19 Do 19.03.2009 | Autor: | Valaina |
Danke für die schnelle Hilfe =) Dachte ichs mir doch dass es da noch einen exakten Weg zur Lösung gibt ~.~
Allerdings hab ich grade ziemliche Schwierigkeiten, mir das vorzustellen: wie genau gehe ich dann vor? Ich habe das jetzt gerade so verstanden: Anstatt dass ich den Grenzwert für [mm] \limes_{x\rightarrow x0} [/mm] von f(x) zwei mal ausrechne, rechne ich ich den Grenzwert [mm] \limes_{\varepsilon\rightarrow0} [/mm] von [mm] f(x0-\varepsilon) [/mm] und [mm] f(x0+\varepsilon) [/mm] , wobei ich die Unstetigkeitsstelle als Wert für xo direkt in die Funktionsgleichung einsetzen darf - Stimmt das?
Erübrigt sich dann der erste Schritt (bei dem ja zweimal das gleiche rauskommt) oder muss ich den auch noch machen?
|
|
|
|
|
Hallo Valaina,
ich verstehe die Frage vielleicht nicht ganz...
> Ich habe das
> jetzt gerade so verstanden: Anstatt dass ich den Grenzwert
> für [mm]\limes_{x\rightarrow x_0}[/mm] von f(x) zwei mal ausrechne,
> rechne ich ich den Grenzwert
> [mm]\limes_{\varepsilon\rightarrow 0}[/mm] von [mm]f(x_0-\varepsilon)[/mm] und
> [mm]f(x_0+\varepsilon)[/mm] , wobei ich die Unstetigkeitsstelle als
> Wert für [mm] x_0 [/mm] direkt in die Funktionsgleichung einsetzen darf
> - Stimmt das?
Du setzt ja nicht [mm] x_0 [/mm] direkt ein, sondern [mm] x_0\pm\varepsilon [/mm] mit [mm] \varepsilon>0 [/mm] und führst dann eine Grenzwertbetrachtung für [mm] \varepsilon\rightarrow{0} [/mm] durch.
> Erübrigt sich dann der erste Schritt (bei dem ja zweimal
> das gleiche rauskommt) oder muss ich den auch noch machen?
Wieso kommt da zweimal das gleiche raus? Woher weißt Du das?
Nimm mal die Funktionsschar [mm] f_a(x)=\bruch{x^2+2x-a}{x^2-3x+2}, a\in\IR^+
[/mm]
Jetzt untersuche die drei Funktionen [mm] f_1, f_3 [/mm] und [mm] f_5 [/mm] an ihren Definitionslücken.
Und?
Grüße
reverend
|
|
|
|