Polordnung einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:15 So 09.02.2014 | Autor: | valoo |
Hallo, ich versuche gerade zu verstehen, warum eine Reihe, deren Koeffizienten durch ein Polynom gegeben sind, gerade die Polordnung = Grad des Polynomes hat.
Genauer: Sei $ f $ ein Polynom und
$ P(t):= [mm] \sum_{n=M}^{\infty} [/mm] f(n) [mm] t^{n} [/mm] $
Dann hat $ P $ bei $ t=1 $ die Polordnung $ deg(f) $.
Warum ist das so? Meine Analysiskenntnisse sind leider ein wenig verkuemmert, ich brauch das nur fuer Dimensionstheorie noetherscher lokaler Ringe...
LG
valoo
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:29 Mo 10.02.2014 | Autor: | Berieux |
Hallo.
> Hallo, ich versuche gerade zu verstehen, warum eine Reihe,
> deren Koeffizienten durch ein Polynom gegeben sind, gerade
> die Polordnung = Grad des Polynomes hat.
>
> Genauer: Sei [mm]f[/mm] ein Polynom und
> [mm]P(t):= \sum_{n=M}^{\infty} f(n) t^{n}[/mm]
>
> Dann hat [mm]P[/mm] bei [mm]t=1[/mm] die Polordnung [mm]deg(f) [/mm].
>
> Warum ist das so? Meine Analysiskenntnisse sind leider ein
> wenig verkuemmert, ich brauch das nur fuer
> Dimensionstheorie noetherscher lokaler Ringe...
Mit Analysis hat das nicht soviel zu tun. In dieser allgemeinen Form macht deine Aussage auch wenig Sinn.
Du betrachtest vermutlich die Hilbert-Poincare Reihe für einen noetherschen graduierten Ring. Man kann beweisen dass es sich dabei um eine rationale Funktion handelt (erst deshalb kann man von Polstellen sprechen).
Wenn dein Ring von homogenen Elementen vom Grad 1 erzeugt ist (als [mm]A_{0}-Algebra[/mm]) kann man zeigen, dass das Hilbert-Polynom den Grad d-1 hat, wobei d die Polstellenodrnung in t=1 ist.
Der Beweis hierzu ist nicht schwer, wenn man weiß dass die Hilbert-Reihe die Form [mm]\frac{f(t)}{(1-t)^s}[/mm] hat, wobei s die Anzahl der Erzeuger und f ein ganzzahliges Polynom ist.
Die Beweise hierzu findest du zB im Atiyah-Macdonald (oder sicherlich auch im Eisenbud).
Ansonsten frag lieber konkreter nach, dann kann man dir vielleicht besser helfen.
Viele Grüße,
Berieux
>
> LG
> valoo
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:08 Di 11.02.2014 | Autor: | felixf |
Moin,
> > Hallo, ich versuche gerade zu verstehen, warum eine Reihe,
> > deren Koeffizienten durch ein Polynom gegeben sind, gerade
> > die Polordnung = Grad des Polynomes hat.
> >
> > Genauer: Sei [mm]f[/mm] ein Polynom und
> > [mm]P(t):= \sum_{n=M}^{\infty} f(n) t^{n}[/mm]
> >
> > Dann hat [mm]P[/mm] bei [mm]t=1[/mm] die Polordnung [mm]deg(f) [/mm].
> >
> > Warum ist das so? Meine Analysiskenntnisse sind leider ein
> > wenig verkuemmert, ich brauch das nur fuer
> > Dimensionstheorie noetherscher lokaler Ringe...
>
> Mit Analysis hat das nicht soviel zu tun. In dieser
> allgemeinen Form macht deine Aussage auch wenig Sinn.
das stimmt so nicht ganz: mit dem Wurzelkritierum kann man zeigen, dass diese Potenzreihe Konvergenzradius [mm] $\ge [/mm] 1$ hat (dass er genau 1 ist folgt daraus, dass die Reihe fuer $t = 1$ offensichtlich divergiert).
LG Felix
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:16 Di 11.02.2014 | Autor: | felixf |
Moin!
> Hallo, ich versuche gerade zu verstehen, warum eine Reihe,
> deren Koeffizienten durch ein Polynom gegeben sind, gerade
> die Polordnung = Grad des Polynomes hat.
>
> Genauer: Sei [mm]f[/mm] ein Polynom und
> [mm]P(t):= \sum_{n=M}^{\infty} f(n) t^{n}[/mm]
>
> Dann hat [mm]P[/mm] bei [mm]t=1[/mm] die Polordnung [mm]deg(f) [/mm].
Das stimmt so nicht: die Polordnung ist [mm] $\deg [/mm] f + 1$. Fuer $f = 1$ und $M = 0$ hast du z.B. $P(t) = [mm] \frac{1}{1 - t}$ [/mm] fuer $|t| < 1$, was einen Pol der Ordnung 1 bei $t = 1$ hat, obwohl [mm] $\deg [/mm] f = 0$ ist.
> Warum ist das so? Meine Analysiskenntnisse sind leider ein
> wenig verkuemmert, ich brauch das nur fuer
> Dimensionstheorie noetherscher lokaler Ringe...
Sei $f = [mm] \sum_{i=0}^k a_i X^i$ [/mm] mit [mm] $a_k \neq [/mm] 0$; dann ist ja [mm] $a_k \neq [/mm] 0$.
Sei nun [mm] $P_i(t) [/mm] := [mm] \sum_{n=M}^\infty n^i t^n$. [/mm] Dann ist $P(t) = [mm] \sum_{i=0}^n a_i P_i(t)$.
[/mm]
Die meromorphe Funktion, die durch [mm] $P_i(t)$ [/mm] beschrieben wird, kannst du nun explizit beschreiben: fuer $M = 0$ ist [mm] $P_0(t) [/mm] = [mm] \frac{1}{1 - t}$ [/mm] fuer $|t| < 1$, und fuer $M > 0$ weicht [mm] $P_0(t)$ [/mm] von dieser Funktion durch Hinzufuegen eines Polynoms ab. Weiterhin ist [mm] $P_{i+1}(t) [/mm] = t [mm] \cdot \frac{d}{dt} P_i(t)$.
[/mm]
Damit folgt (per Induktion), dass [mm] $P_i$ [/mm] bei $t = 1$ einen Pol der Ordnung $i + 1$ hat, und somit die Linearkombination $P(t)$ einen Pol der Ordnung $k + 1 = [mm] \deg [/mm] f + 1$ bei $t = 1$.
LG Felix
|
|
|
|