www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Polarkoordinaten
Polarkoordinaten < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mi 19.05.2004
Autor: mario

Hallo ich habe ein problem mit folgender Funktion in Polarkoordinaten
die Aufgabenstellung lautet: Ermitteln sie den Flächeninhalt der zwischen der Kurve und der Polgeraden gebildeten Fläche
Als Hinweis wird gegeben man sollte die Standartsubstitution für trigonometrische Funktionen verwenden

[mm] r=r(\varphi)=\bruch{1}{\wurzel{cos \varphi+2}} \qquad \varphi \in [0,pi] [/mm]

Ich weiß das die Standartsubstitution lautet x=2arctan t
allerdings hilft mir das noch nicht viel weiter

Ich finde keinen Anfang darum kann ich auch noch keine Fortschritte geben.
Ich wäre euch dankbar wenn ihr mir ein paar denkanstöße geben könntet.


        
Bezug
Polarkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mi 19.05.2004
Autor: Stefan

Hallo Mario,

wahrscheinlich blamiere ich mich jetzt bis auf die Knochen, aber was versteht man bei dieser Aufgabe unter "Polgerade"?

Ich durchschaue das gerade nicht. :-(

Um welches Integral handelt es sich, d.h. wo sind genau die Grenzen?

Liebe Grüße
Stefan

Bezug
        
Bezug
Polarkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:02 Mi 19.05.2004
Autor: phymastudi

Hallo,

ist mit der Polgeraden nicht einfach die Polarachse, also die x-Achse gemeint, von der aus Phi gemessen wird?!

Bezug
                
Bezug
Polarkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Mi 19.05.2004
Autor: Stefan

Hallo Björn,

ja, das mag sein, ich kenne diese Ausdrücke nicht. Aber es macht in jedem Fall Sinn. Danke!

Liebe Grüße
Stefan

Bezug
        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 20.05.2004
Autor: Paulus

Hallo mario

ich glaube, folgende Substitution ist gemeint:

[mm]r = \wurzel{x^2+y^2}[/mm]

und

[mm]\cos{\varphi} = \bruch{x}{\wurzel{x^2+y^2}}[/mm]

und (hier allerdings belanglos)

[mm]\sin{\varphi} = \bruch{y}{\wurzel{x^2+y^2}}[/mm]

Nach dem Substituieren solltest du [mm]y(x)[/mm] bestimmen können, wobei du allerdings tiersch auf die korrekten Vorzeichen aufpassen musst.

Tip dazu: Für [mm]\varphi = 0[/mm] kannst du den zugehörigen Wert für [mm]r[/mm] berechnen; und [mm]\varphi = 0[/mm] bedeutet auch, dass dort gilt: [mm]y = 0[/mm])

Liebe Grüsse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]