www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Poisson-Verteilung
Poisson-Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson-Verteilung: berechnen
Status: (Frage) beantwortet Status 
Datum: 13:30 So 03.06.2012
Autor: bandchef

Aufgabe
Die Zufallsgröße X = Anzahl der in einem bestimmten Zeitintervall in einer Telefonzentrale eintreffenden
Anrufe (=Signale) sei Poissonverteilt. Die Zentrale erhält im Mittel 180 Anrufe in der Stunde.
Wie groß ist die Wahrscheinlichkeit, dass innerhalb einer Minute mehr als 6 Anrufe eintreffen?

Ich hab das mal so formuliert:

$P(X [mm] \geq [/mm] 6) = 1 - P(X < 6) = [mm] \sum_{k=0}^{5} \left( 1 - P(k)\right) [/mm] = [mm] \sum_{k=0}^{5} \left( 1 - \frac{\lambda^k}{k!} \cdot e^{-\lambda} \right)$ [/mm]

Ich hab jetzt aber irgendwie das Problem, dass ich nicht weiß was der Parameter [mm] \lambda [/mm] (Erwartungswert) sein soll...

        
Bezug
Poisson-Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 So 03.06.2012
Autor: ullim

Hi,

> Die Zufallsgröße X = Anzahl der in einem bestimmten
> Zeitintervall in einer Telefonzentrale eintreffenden
>  Anrufe (=Signale) sei Poissonverteilt. Die Zentrale
> erhält im Mittel 180 Anrufe in der Stunde.
>  Wie groß ist die Wahrscheinlichkeit, dass innerhalb einer
> Minute mehr als 6 Anrufe eintreffen?
>  Ich hab das mal so formuliert:
>  
> P(X [mm] \geq [/mm] 6) = 1 - P(X < 6) = [mm] \sum_{k=0}^{5} \left( 1 - P(k)\right) [/mm] = [mm] \sum_{k=0}^{5} \left( 1 - \frac{\lambda^k}{k!} \cdot e^{-\lambda} \right) [/mm]
>

Da nach mehr als 6 Anrufen gefragt ist muss es heissen

[mm] P(X>6)=1-P(X\le 6)=1-\sum_{k=0}^{6} \bruch {\lambda^k}{k!} \cdot e^{-\lambda} [/mm]

> Ich hab jetzt aber irgendwie das Problem, dass ich nicht
> weiß was der Parameter [mm]\lambda[/mm] (Erwartungswert) sein
> soll...

Da 180 Anrufe pro Stunde eintreffen, treffen 3 pro Minute ein. Damit ist [mm] \lambda=3 [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]