www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Poisson-Verteilung
Poisson-Verteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson-Verteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:08 Do 21.12.2006
Autor: vicky

Aufgabe
In einer Telefonzentrale treffen innerhalb von 10 Minuten Aufträge gemäß einer Poisson(5)-Verteilung ein. Die Aufträge seien (unabhängig voneinander) mit Wahrscheinlichkeit 0.8 vom Typ 1 und mit Wahrscheinlichkeit 0.2 vom Typ 2.

Formulieren Sie mit obigen Annahmen ein 2-stufig gekoppeltes Modell für die Zahl der Aufträge insgesamt (n) und die Aufträge von Typ 1 [mm] (k_1). [/mm] (Seien Sie besonders sorgfältig bei der zweiten Stufe!)

[mm] X_1 [/mm] (bzw. [mm] X_2) [/mm] sei die Zahl der Aufträge vom Typ1 (bzw. vom Typ2). Bestimmen Sie die gemeinsame Zähl-Dichte [mm] f^{X_1,X_2}(k_1,k_2) [/mm] von [mm] X_1 [/mm] und [mm] X_2. [/mm]

Bestimmen Sie (mit Hilfe der gemeinsamen Z-Dichte) die Z-Dichten von [mm] X_1 [/mm] und [mm] X_2. [/mm] Was können Sie zur Abhängigkeit von [mm] X_1 [/mm] und [mm] X_2 [/mm] sagen?

Hallo,

komme bei dieser Aufgabe nicht wirklich voran. Habe mir überlegt das bei der Poisson(5)-Verteilung [mm] (\lambda [/mm] = 5) innerhalb von 10 Minuten dann durchschnittlich(bzw. im Mittel) 5 Aufträge eingehen von denen 4 vom Typ1 und  ein Auftrag von Typ 2 sind. Doch hilft mir das weiter? Ich vermute das es auch etwas mit Randverteilung zu tun hat aber ich weiß nicht wie man da am besten eine Tabelle aufstellt um die einzelen Wahrscheinlichkeiten zu untersuchen bzw. eventuell Z-Dichten daraus abzulesen.
Vielleicht würde mir diese 2-stufig gekoppelte Modell weiterhelfen.
Für den Grundraum schlage ich folgendes vor [mm] \Omega [/mm] = {0,1,2,...,n} (denn es können doch insgesamt beliebig viele Aufträge eingehen) x { eventuell [mm] k_1=i*0,8 [/mm] mit i=0,1,2,...,n(je nachdem wieviele Aufträge insgesamt vorliegen)} ( von den gesamten Aufträge sind ja mit W.0.8 vom Typ1)

Kann auch sein das ich ganz falsch mit meiner Vermutung liege, daher meine Bitte um Hilfe bei dieser Aufgabe.

Beste Grüße

vicky

        
Bezug
Poisson-Verteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Sa 23.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]