www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Plausibler Schätzwert
Plausibler Schätzwert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Plausibler Schätzwert: Angabe
Status: (Frage) beantwortet Status 
Datum: 00:38 Fr 26.02.2010
Autor: mathe-tu-muenchen

Aufgabe
Folgende Beobachtungen stimmen von einer Verteilung mit der Dichtefunktion f(x) = [mm] \phi [/mm] * [mm] (1-x)^{\phi - 1} [/mm] im Intervall (0,1) mit [mm] \phi [/mm] > 0

0,56 0,29 0,28 0,24 0,41

Bestimmen sie den plausiblen Schätzwert von [mm] \phi [/mm] (mit Herleitung).

Für diese Beispiel brauche ich einmal die Likelihood-Funktion, welche ich dann maximieren muss - soweit ich das richtig verstanden habe.

[mm] L(\phi, x_1,...,x_n) [/mm] = [mm] \produkt_{i=1}^{n} \phi [/mm] * [mm] (1-x)^{\phi - 1} [/mm] = [mm] \phi^n [/mm] * [mm] \produkt_{i=1}^{n} (1-x)^{\phi - 1} [/mm]

Soweit komme ich mal. Bei den Beispielen, die ich bis jetzt gerechnet habe, war das x immer im Exponenten, deshalb ergab sich immer irgendwo ein [mm] \sum_{i=1}^{n} x_i [/mm] , was dann der Mittelwert war, also [mm] \bar{X_n}. [/mm] Aber bei dem Beispiel funtkioniert das nicht - wie komme ich da weiter?

        
Bezug
Plausibler Schätzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 01:31 Fr 26.02.2010
Autor: ullim

Hi,

Du hast die Likelihood Funktion

[mm] L(x_1, [/mm] .. [mm] x_n|\phi)=\produkt_{i=1}^{n}\phi*(1-x_i)^\phi [/mm] die für gegebene [mm] x_i, [/mm] i=1,..n bzgl. [mm] \phi [/mm] minimiert werden muss.

Das kann dadurch erreicht werden, in dem man den Logartihmus der Likelihood Funktion bildet und diese für [mm] \phi [/mm] minimiert. Also die Gleichung

[mm] \bruch{\partial}{\partial\phi}ln[L(x_1, [/mm] .. [mm] x_n|\phi)]=0 [/mm] nach [mm] \phi [/mm] auflöst. Es ergibt sich als Schätzwert für [mm] \phi [/mm]

[mm] \hat \phi=-\bruch{n}{\summe_{i=1}^{n}ln(1-x_i)} [/mm]

Nun kann man die Werte für [mm] x_i [/mm] einsetzen und erhält [mm] \hat \phi [/mm]

mfg ullim

Bezug
                
Bezug
Plausibler Schätzwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:50 Fr 26.02.2010
Autor: mathe-tu-muenchen

Ohh, sehr gut - ich werde das mal durchrechnen. Das hat mir auf jeden Falle schon geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]