www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Picard-Lindelöf
Picard-Lindelöf < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Picard-Lindelöf: Anwendungs-Verständnisproblem
Status: (Frage) beantwortet Status 
Datum: 12:10 So 10.07.2011
Autor: mathfrag

Aufgabe
Begründen Sie die Aussage:

Durch jeden Punkt [mm] (a,b)\in \IR^{2} [/mm] verläuft genau eine Lösung der Dgl. y´= (y+c) *cos (h(x)) (h stetig, [mm] c\in \IR); [/mm] diese Lösung ist auf  [mm] \IR [/mm] definiert.

Ich verstehe das Verfahren von Picard-Lindelöf nicht ganz. ICh habe mich wie folgt an die Aufgabe "getraut":

I.

[mm] \bruch{df}{dx} [/mm]

=cos(h(x)) I=[-a,a] J=[-b,b]

II.

[mm] Max|\bruch{df}{dx}|\le [/mm] L

[mm] \Rightarrow [/mm] cos |h(x)| [mm] \le [/mm] cos(0)=1=L


HIer habe ich bereits ein Problem, ich denke cosinus hat seinen Maximum bei 1 hat und deswegen setze x= 0... ist diese Überlegung korrekt?


III.
M=max |f(x,y)|= [mm] \max_{x,y \in \IR} [/mm]

ich nehme an x=a bzw a+1 und y=b bzw y+1 und setze im zweiten Schritt für cosinus den Wert 1 ist wegen II.

= |(a+c)*cosh(b)|=(a+c)*1=a+c

IV
[mm] \alpha= [/mm] min{1, [mm] \bruch{b}{M} [/mm] }

=min {1, [mm] \bruch{b}{a+c} [/mm] } =1

nehme hier 1, intuitiv, da ich nicht genau weiß wie ich mit dem Bruch umgehen soll

V.
[mm] J=[x_{0}- \alpha, x_{0} [/mm] + [mm] \alpha [/mm] ]
I=[a-1,a+1]

Für erläuterung ob ich auf dem richtigen Weg bin und ob meine Überlegungen so korrekt sind wäre ich sehr dankbar...

        
Bezug
Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 So 10.07.2011
Autor: fred97

Sei f(x,y):= (y+c)cos(h(x))

Dann ist doch

         $|f(x,y)-f(x,z)| [mm] \le [/mm] 1*|y-z|$

f genügt also auf [mm] \IR^2 [/mm] einer Lipschitzbedingung bezüglich y.

FRED

Bezug
                
Bezug
Picard-Lindelöf: Rückfrage
Status: (Frage) überfällig Status 
Datum: 13:48 So 10.07.2011
Autor: mathfrag

Vielen Dank.

y-z... Ok. Wofür steht die 1? war meine vermutung mit L= cos(o)=1 richtig? Wenn ich also nur bis Schritt 2 gehe, reicht es um nachzuweisen, dass durch jeden Punkt (a,b) [mm] \in \IR^2 [/mm] genau eine Lösung der DGL verläuft? und es zeigt auch, dass diese Lösung auf ganz [mm] \R [/mm] definiert ist?

Bezug
                        
Bezug
Picard-Lindelöf: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 12.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]