Picard-Iteration < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:42 Sa 30.10.2010 | Autor: | gollum13 |
Aufgabe | Was ist die Picard-Iteration? |
Guten Abend,
In einem Beweis kam letztens kurz die Picard-Iteration vor. Nun weiß ich soviel, dass dabei rekursiv eine Funktionenfolge definiert wird, die, falls die Voraussetzungen von Picard-Lindelöf erfüllt sind, gleichmäßig gegen die Lösungsfkt. des AWP konvergieren soll. Hat jemand ein einfach Beispiel, bei dem aber f(y,t) auch wirklich von y abhängt. Ich habe im Netz nämlich nur so simple Beispiel gefunden.
Grüße,
gollum13
Edit: Ok, habe nun ein eigenes Beispiel gerechnet, also das Verfahren an zu wenden gelingt, aber ein vlt. hat ja trotzdem jemand Infos dazu. Z.B. warum das mit der Konvergenz so hin haut.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:26 Sa 30.10.2010 | Autor: | rainerS |
Hallo!
> Was ist die Picard-Iteration?
>
> Guten Abend,
>
> In einem Beweis kam letztens kurz die Picard-Iteration vor.
> Nun weiß ich soviel, dass dabei rekursiv eine
> Funktionenfolge definiert wird, die, falls die
> Voraussetzungen von Picard-Lindelöf erfüllt sind,
> gleichmäßig gegen die Lösungsfkt. des AWP konvergieren
> soll. Hat jemand ein einfach Beispiel, bei dem aber f(y,t)
> auch wirklich von y abhängt. Ich habe im Netz nämlich nur
> so simple Beispiel gefunden.
>
> Grüße,
> gollum13
>
> Edit: Ok, habe nun ein eigenes Beispiel gerechnet, also das
> Verfahren an zu wenden gelingt, aber ein vlt. hat ja
> trotzdem jemand Infos dazu. Z.B. warum das mit der
> Konvergenz so hin haut.
Hier ist ein schönes Beispiel:
[mm] y'=ty^2[/mm], $y(0)=1$ ,
das zeigt, dass die Iteration tatsächlich nur in einem endlichen Intervall funktioniert, wenn die DGL keine globale Lipschitzbedingung erfüllt. (Die DGL hat eine globale Lösung, die du mit Trennung der Variablen bestimmen kannst.=
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:34 Sa 30.10.2010 | Autor: | gollum13 |
Ja, danke. Sehr praktisches, da es dem Bsp. das ich gerechnet habe ähnelt. Hast du eine Idee zu nem Beweis, dass die Fkt.-Folge gleichmäßig gegen eine Lösung des jeweiligen AWP konvergiert?
|
|
|
|