www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Permutationszyklen Multiplikat
Permutationszyklen Multiplikat < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationszyklen Multiplikat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Di 03.11.2009
Autor: NightmareVirus

Aufgabe
Sei [mm] $\pi_1, \pi_2 \in S_6$ [/mm] mit

[mm] $$\pi_1 [/mm] := [mm] \begin{pmatrix}1&2&3&4&5&6\\1&5&3&6&4&2\end{pmatrix}$$ [/mm]
[mm] $$\pi_2 [/mm] := [mm] \begin{pmatrix}1&2&3&4&5&6\\3&2&4&1&6&5\end{pmatrix}$$ [/mm]

a) Schreibe [mm] $\pi_1, \pi_2$ [/mm] in Zyklenschreibweise

b) Berechne das Produkt [mm] $\pi_1 \cdot \pi_2$ [/mm]

Hi,
Ich arbeite gerade die Globalübung nach, und stehe auf dem Schlauch wie unsere Dozentin auf die Ergebnisse kommt.

Zunächst die  Zyklenschreibweise.
a)
[mm] $$\pi_1 [/mm] := [mm] \begin{pmatrix}1&2&3&4&5&6\\1&5&3&6&4&2\end{pmatrix} [/mm] = (2,5,4,6)$$
[mm] $$\pi_2 [/mm] := [mm] \begin{pmatrix}1&2&3&4&5&6\\3&2&4&1&6&5\end{pmatrix} [/mm] = (1,3,4)(5,6)$$
Dies ist soweit klar.

Das Produkt bereitet mir aber noch Kopfschmerzen

b)
Mit der Matrixschreibweise würde ich ja einfach zunächst [mm] $\pi_1$ [/mm] aufschreiben und dann unter die 2. Zeile die entsprechenden Übergänge von [mm] $\pi_2$ [/mm] ergänzen. Also:

[mm] $$\pi_1 [/mm] := [mm] \begin{pmatrix}1&2&3&4&5&6\\1&5&3&6&4&2\\3&6&4&5&1&2&\end{pmatrix}$$ [/mm]

Ergibt die Zyklen: (1,3,4,5)(2,6)

Laut Globalübung ist jedoch:

[mm] $$\pi_1 \cdot\pi_2(2,5,4,6)(1,3,4)(5,6) [/mm] = (1,3,6,4)(5,2)$$

Wäre gute wenn mir jemand
1. erklären könnte was bei meiner Matrixschreibweise falsch ist, und
2. erklären könnte wir man aus der Zyklenschreibweise das Ergebnisse berechnet


gruß

Thomas

        
Bezug
Permutationszyklen Multiplikat: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Di 03.11.2009
Autor: statler

Mahlzeit!

> Sei [mm]\pi_1, \pi_2 \in S_6[/mm] mit
>  
> [mm]\pi_1 := \begin{pmatrix}1&2&3&4&5&6\\1&5&3&6&4&2\end{pmatrix}[/mm]
>  
> [mm]\pi_2 := \begin{pmatrix}1&2&3&4&5&6\\3&2&4&1&6&5\end{pmatrix}[/mm]
>  
> a) Schreibe [mm]\pi_1, \pi_2[/mm] in Zyklenschreibweise
>  
> b) Berechne das Produkt [mm]\pi_1 \cdot \pi_2[/mm]
>  Hi,
>  Ich arbeite gerade die Globalübung nach, und stehe auf
> dem Schlauch wie unsere Dozentin auf die Ergebnisse kommt.
>  
> Zunächst die  Zyklenschreibweise.
>  a)
>  [mm]\pi_1 := \begin{pmatrix}1&2&3&4&5&6\\1&5&3&6&4&2\end{pmatrix} = (2,5,4,6)[/mm]
>  
> [mm]\pi_2 := \begin{pmatrix}1&2&3&4&5&6\\3&2&4&1&6&5\end{pmatrix} = (1,3,4)(5,6)[/mm]
>  
> Dies ist soweit klar.
>  
> Das Produkt bereitet mir aber noch Kopfschmerzen
>  
> b)
>  Mit der Matrixschreibweise würde ich ja einfach zunächst
> [mm]\pi_1[/mm] aufschreiben und dann unter die 2. Zeile die
> entsprechenden Übergänge von [mm]\pi_2[/mm] ergänzen. Also:
>  
> [mm]\pi_1 := \begin{pmatrix}1&2&3&4&5&6\\1&5&3&6&4&2\\3&6&4&5&1&2&\end{pmatrix}[/mm]

Das ist nicht [mm] \pi_1, [/mm] sondern etwas Neues.

> Ergibt die Zyklen: (1,3,4,5)(2,6)
>  
> Laut Globalübung ist jedoch:
>  
> [mm]\pi_1 \cdot\pi_2(2,5,4,6)(1,3,4)(5,6) = (1,3,6,4)(5,2)[/mm]
>  
> Wäre gute wenn mir jemand
> 1. erklären könnte was bei meiner Matrixschreibweise
> falsch ist, und
>  2. erklären könnte wir man aus der Zyklenschreibweise
> das Ergebnisse berechnet

ad 1: Du hast die Dinger falschherum verkettet, und weil die Verknüpfung nicht kommutativ ist, gibt es unterschiedliche Ergebnisse. Permutationen liest man heutzutage wie Abbildungen von rechts nach links, daher bedeutet [mm] \pi_1 \cdot \pi_2 [/mm] 'mach erst [mm] \pi_2 [/mm] und dann [mm] $\pi_1$'. [/mm] Also muß bei der Matrix (hier eher ein unpassendes Wort) [mm] \pi_2 [/mm] nach oben und [mm] \pi_1 [/mm] darunter. In alten Büchern ist das manchmal anders.

ad 2: Ganz entsprechend, du fängst rechts an
(2,5,4,6)(1,3,4)(5,6):
aus 5 wird 6, dann passiert mit der 6 nix, dann wird aus 6 die 2
2 bleibt 2, 2 bleibt 2, 2 wird 5
[mm] \Rightarrow [/mm] (2 5)
6 wird 5, 5 bleibt, 5 wird 4  usw.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]