www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Permutationen
Permutationen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutationen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:48 Di 12.11.2013
Autor: Fry

Hallo zusammen,

habe versucht die untenstehende Aufgabe zu lösen. Bei Teil (3) müsste die Lösung aber [mm] $\frac{1}{k!}\sum_{l=1}$... [/mm] sein. Könnte mir jemand sagen, wo mein Fehler ist? Danke !

LG Fry


[a][Bild Nr. 1 (fehlt/gelöscht)]

        
Bezug
Permutationen: Anhang gesperrt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Di 12.11.2013
Autor: Diophant

Hallo,

bitte tippe Aufgabe sowie Rechnung hier ab. Dein Dateianhang wurde wegen falscher Angaben zur Urheberschaft gemäß unseren Forenregeln  gesperrt.

Bitte lade hier nur eigene Werke hoch und mache grundsätzlich wahrheitsgemäße Angaben. Auch wenn man ein gedrucktes Werk einscant, ist man keinesfalls der Urheber.

Gruß, Diophant

Bezug
        
Bezug
Permutationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 Sa 16.11.2013
Autor: Fry

Aufgabe
<br>
Sei [mm]n\in\mathbb N[/mm]. Wir betrachten die Menge [mm]\Omega[/mm] der Permutationen, d.h. der bijektiven Selbstabbildungen, auf der Menge [mm]\{1,...,n\}[/mm] mit
der Laplaceverteilung auf [mm]\Omega[/mm]. Für eine Permutation [mm]\sigma\in\Omega[/mm] heißt ein Element [mm]i\in\{1,...,n\}[/mm] mit [mm]\sigma(i)=i[/mm] Fixpunkt der Permutation.

(1) Bestimmen Sie für [mm]1\le k\le n[/mm] die Wkeit, dass [mm]i_1,...,i_k\in\{1,...,n\}[/mm], [mm]i_j\not=i_l[/mm] für [mm]j\not=l[/mm], Fixpunkte einer zufälligen ausgewählten Permutation sind.

(2) Bestimmen Sie die Wkeit, dass eine zufällige Permutation keinen Fixpunkt hat.

(3) Bestimmen Sie mit Hilfe von (1) und (2) die Wkeit, dass eine Permutation genau k Fixpunkte hat.


<br>

Habe versucht die obige Aufgabe zu lösen. Mittels Recherche im Inet bin ich darauf gestoßen, dass die Lösung für (3)
[mm] $\frac{1}{k!}\sum_{l=2}^{n-k}\frac{(-1)^l}{l!}$ [/mm] seien soll. Bei mir ist der Vorfaktor anders, ich finde allerdings in meiner Lösung nicht den Fehler.
Könnte mir jemand helfen?

Vielen Dank!
LG
Christian

[Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Permutationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 Sa 16.11.2013
Autor: Fry

Die ist die Inetquelle, auf die ich mich beziehe:

http://books.google.de/books?id=q3Mu92Ds5BQC&pg=PA78&lpg=PA78&dq=wahrscheinlichkeit+genau+fixpunkte&source=bl&ots=GbALm2MHDE&sig=q9aw2xrUZOOwOV8gtwYWVhE1SZQ&hl=de&sa=X&ei=TjV-Up6gEIOKtAahy4G4Cw&ved=0CFEQ6AEwBA#v=onepage&q=wahrscheinlichkeit%20genau%20fixpunkte&f=false

Bezug
                
Bezug
Permutationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Sa 16.11.2013
Autor: Fry

Hab den Fehler gefunden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]