Permutationen < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | 18. Gegeben sind die Ziffern 1, 2, 3, 4, 5, 6.
a) Wie viele 6-stellige Zahlen lassen sich bilden, wenn jede Ziffer in einer Zahl nur einmal auftreten soll?
b) Wie viele 3-stellige Zahlen lassen sich so bilden?
c) Sämtliche 6-stelligen Zahlen aus a) seien Aufsteigend der Größe nach geordnet. An welcher stelle steht die kleinste Zahl, die mit 4 beginnt? |
Hi,
es geht um die obige aufgabe.
a) Meiner Ansicht nach Permutationen einer 6-Menge, also:
|ω| = 6! =720
b) 3 Permutationen einer 6 Menge:
|ω| = [mm] \bruch{6!}{3!} [/mm] = 120
c) Die bereitet mit Probleme. ich müsste die Anzahl der 6 stelligen Zahlen wissen, die mit 1 2 3 beginnen. Nur die Frage wie?^^
----
Ich steh noch am Anfang der Kominatorik..also nich böse sein, wenn was total falsch ist xD
mfg, Michael
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:00 Di 09.12.2008 | Autor: | Dath |
Die ersten beiden teilaufgaben hast du, meines Erachtens, richtig gelöst.
Bei der c) gibt es eine einfache Lösungsidee, wobei man die aufgabenbedingte Anforderungen beachten muss (keine Ziffer kommt zweimal vor!)
1. Frage: Wie viele Möglichkeiten gibt es, eine 6-stellige Ziffer zu bilden, die eine 1 am Anfang hat?
2. Frage: Wie viele Möglichkeiten gibt es, eine 6-stellige Ziffer zu bilden, die eine 2 am Anfang hat?
3. Frage: Wie viele Möglichkeiten gibt es, eine 6-stellige Ziffer zu bilden, die eine 3 am Anfang hat?
Es gibt hierbei immer gleich viele Möglichkeiten, also musst du netterweise nur einen Fall betrachten, ich nehme den 1., weil 1 die erste Zahl der natürlichen Zahlen ist :)
Also:
Es gibt [mm]1*5*4*3*2*1[/mm] Möglichkeiten für den ersten Fall.
Da es uns aber egal ist, ob eine 1 oder 2 oder 3 am Anfang steht folgt Obiges (das mit den gleichvielen Möglichkeiten!)
Also:
Gesamt: [mm]3*5![/mm].
Zu zeigen bleibt jetzt noch, dass deine vierstellige Zahl an [mm]3*5!+1[/mm]-ter Stelle steht, das solltest du aber schaffen!
Hilft das?
Viele Grüße,
Dath
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:03 Di 09.12.2008 | Autor: | DjHighlife |
ja, danke
sowas in der art hatte ich mir schon gedacht :)
also nochmals danke
mfg, Michael
|
|
|
|