www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Permutation
Permutation < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:12 Mi 17.10.2012
Autor: Hellfrog

Aufgabe
Es sei [mm] \sigma [/mm] := [mm] \pmat{ 1 & 2 &3&4&5&6&7&8\\ 2&5&3&7&4&8&1&6 } \in S_{8}. [/mm]

a) Schreiben Sie [mm] \delta [/mm] als Produkt von Zyklen, sodass je zwei Zyklen dieser Darstellung kein gemeinsamen Element haben.

b) Schreiben Sie [mm] \sigma [/mm] als Produkt von Transpositionen.

c) Bestimmen Sie [mm] sign(\sigma), \sigma^{-1} [/mm] und [mm] sign(\sigma^{-1}). [/mm]

hallo

wollte fragen, ob mal jemand drüber schauen kann ob das alles so stimmt.


zu a): p = (1,2,5,4,7) (6,8) (3)
ich wüsste hier nicht, wie man die zyklen schreiben kann, damit zwei zyklen ein gemeinsames element haben, ohne das ein zyklus doppelt vorkommt. oder wie ist das gemeint?

zu b): [mm] \tau [/mm] = (1,2) (2,5) (5,4) (4,7) (6,8) (3)

zu c): [mm] sgn(\sigma) [/mm] = 1 ; [mm] sgn(\sigma) [/mm] = [mm] (-1)^{k} [/mm] , k = Anzahl der Transpositionen

[mm] \sigma^{-1} [/mm] = [mm] \pmat{ 1 & 2 &3&4&5&6&7&8\\ 7&1&3&5&2&8&4&6 } [/mm]

und [mm] sgn(\sigma^{-1}) [/mm] = 1

ist [mm] sgn(\sigma)=sgn(\sigma^{-1}) [/mm] nicht immer der fall, da es sich doch um eine bijektive abbildung handelt?


danke im voraus

        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Mi 17.10.2012
Autor: teo

Hallo,

> Es sei [mm]\sigma[/mm] := [mm]\pmat{ 1 & 2 &3&4&5&6&7&8\\ 2&5&3&7&4&8&1&6 } \in S_{8}.[/mm]
>  
> a) Schreiben Sie [mm]\delta[/mm] als Produkt von Zyklen, sodass je
> zwei Zyklen dieser Darstellung kein gemeinsamen Element
> haben.
>  
> b) Schreiben Sie [mm]\sigma[/mm] als Produkt von Transpositionen.
>  
> c) Bestimmen Sie [mm]sign(\sigma), \sigma^{-1}[/mm] und
> [mm]sign(\sigma^{-1}).[/mm]
>  hallo
>  
> wollte fragen, ob mal jemand drüber schauen kann ob das
> alles so stimmt.
>  
>
> zu a): p = (1,2,5,4,7) (6,8) (3)
>  ich wüsste hier nicht, wie man die zyklen schreiben kann,
> damit zwei zyklen ein gemeinsames element haben, ohne das
> ein zyklus doppelt vorkommt. oder wie ist das gemeint?

Das stimmt so.
  

> zu b): [mm]\tau[/mm] = (1,2) (2,5) (5,4) (4,7) (6,8) (3)

Hier fehlt die Transposition (1,7)! Außerdem ist das Produkt verkehrt herum geschrieben. Man liest das Produkt immer von rechts nach links! (3) = id kannst du auch weglassen.
  

> zu c): [mm]sgn(\sigma)[/mm] = 1 ; [mm]sgn(\sigma)[/mm] = [mm](-1)^{k}[/mm] , k =
> Anzahl der Transpositionen

Die Anzahl der Transpositionen ist 6 also stimmt das, allerdings hast du nur 5 Transpositionen da stehn ;-).
  

> [mm]\sigma^{-1}[/mm] = [mm]\pmat{ 1 & 2 &3&4&5&6&7&8\\ 7&1&3&5&2&8&4&6 }[/mm]

Stimmt
  

> und [mm]sgn(\sigma^{-1})[/mm] = 1

Stimmt

>  
> ist [mm]sgn(\sigma)=sgn(\sigma^{-1})[/mm] nicht immer der fall, da
> es sich doch um eine bijektive abbildung handelt?
>  

Glaub schon..

> danke im voraus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]