www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Permutation
Permutation < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:49 So 18.05.2014
Autor: Mathics

Aufgabe
Das Wort "passswort" kann in verschiedenen Kombinationen auftreten. Wie viele mögliche Anordnungen gibt es?

Hallo,

hier ist ja zunächst einmal nach der Permutation gefragt. Wir haben 9 Elemente, also 9!. Aber ich würde es nochmal durch 3! teilen, da "s" ja 3 mal gleichwertig drankommt. Oder muss ich nur durch 3 teilen?


LG
Mathics

        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 So 18.05.2014
Autor: Diophant

Hallo Mathics,

> Das Wort "passswort" kann in verschiedenen Kombinationen
> auftreten. Wie viele mögliche Anordnungen gibt es?
> Hallo,

>

> hier ist ja zunächst einmal nach der Permutation gefragt.
> Wir haben 9 Elemente, also 9!. Aber ich würde es nochmal
> durch 3! teilen, da "s" ja 3 mal gleichwertig drankommt.

Ja genau:

[mm] z=\bruch{9!}{3!}=60480 [/mm]

ist richtig. [ok]

Gruß, Diophant

Bezug
                
Bezug
Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 So 18.05.2014
Autor: Mathics

Okey, dann hatte ich das noch richtig in Erinnerung. Aber ist dann ein Fehler in unserem Skript wenn hier steht:

"Divisionssatz der Kombinatorik: Werden bei einer Zusammenstellung von M Objekten jeweils k als gleichwertig angesehen, dann erhält man die Anzahl der zu unterscheidenden Objekte als M/K?"


LG
Mathics

Bezug
                        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 So 18.05.2014
Autor: Diophant

Hallo,

> Okey, dann hatte ich das noch richtig in Erinnerung. Aber
> ist dann ein Fehler in unserem Skript wenn hier steht:

>

> "Divisionssatz der Kombinatorik: Werden bei einer
> Zusammenstellung von M Objekten jeweils k als gleichwertig
> angesehen, dann erhält man die Anzahl der zu
> unterscheidenden Objekte als M/K?"

Geht es um []dieses Skript?

Nein, das ist kein Fehler. Das muss man einfach gründlich durchlesen und sich die Bedeutung des Textes klar machen. Mache dir mal klar, weshalb da das Wörtlein jeweils benutzt wird und um welche Anzahl geht es hier geht.

Die Sinnhaftigkeit dieses Satzes die kann man bezweifeln, mir kommt das als Satz unter diesem Namen das erste mal unter. Ich war immer der Meinung, dass man für solche Trivia keine extra Sätze benötigt. :-)

Gruß, Diophant

Bezug
                                
Bezug
Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 So 18.05.2014
Autor: Mathics

Genau, das ist das Skript! Das meint dann wohl die Anzahl der verschiedenen Kombinationen also A,B ist dasselbe wie B,A.

LG
Mathics

Bezug
                                        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 So 18.05.2014
Autor: Diophant

Hallo Mathics,

> Genau, das ist das Skript! Das meint dann wohl die Anzahl
> der verschiedenen Kombinationen also A,B ist dasselbe wie
> B,A.

Nein, du liest viel zu schlampig! Da geht es überhaupt noch nicht um Kombinationen oder Permutationen, einzig und allein um die Anzahl unterscheidbarer Objekte. Da ist auch ein Beispiel dabei, welches das verdeutlicht, hast du das nicht gesehen?

Gruß, Diophant

Bezug
                                                
Bezug
Permutation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 So 18.05.2014
Autor: Mathics

Bezogen auf das Skatbeispiel:
Gesuchte Anzahl (vorweg) ist ja: M = 32⋅31 = 496.

Herz Bube, Karo 7 ist dasselbe wie Karo 7, Herz Bube, weil es auf die Reihenfolge nicht ankommt. Teilt man hier jetzt durch 2, weil man doch bei jedem Paar 2 Möglichkeiten hat, diese verschieden anzuordnen oder?

LG
Mathics

Bezug
                                                        
Bezug
Permutation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 So 18.05.2014
Autor: Diophant

Hallo,

> Bezogen auf das Skatbeispiel:
> Gesuchte Anzahl (vorweg) ist ja: M = 32⋅31 = 496.

>

> Herz Bube, Karo 7 ist dasselbe wie Karo 7, Herz Bube, weil
> es auf die Reihenfolge nicht ankommt. Teilt man hier jetzt
> durch 2, weil man doch bei jedem Paar 2 Möglichkeiten hat,
> diese verschieden anzuordnen oder?

Insbesondere jedoch, weil man jeweils Kartenpaare zählt!

Ein einfacheres Beispiel: wenn du bei einem Skatblatt die Farben vernachlässigst, dann hast du anstatt 32 unterscheidbarer Objekte nur noch

[mm] \bruch{32}{4}=8 [/mm]

Jetzt klarer, auch weshalb ich oben angedeutet habe, dass das alles völlig trivial ist?

Gruß, Diophant

Bezug
                                                                
Bezug
Permutation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 So 18.05.2014
Autor: Mathics

Jap, jetzt ist es mir klar, danke Diophant :)

LG
Mathics

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]