www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Periodische Funktionen
Periodische Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Periodische Funktionen: Hilfestellung erbeten...
Status: (Frage) beantwortet Status 
Datum: 16:57 Mi 14.06.2006
Autor: DeutschlandvorschiessteinTor

Aufgabe
Eine Funktion [mm] f: \IC \to \IC [/mm] heißt doppelt periodisch, falls es 2 [mm] \IR [/mm] - lineare unabhängige Vektoren [mm] w_1,w_2 \in \IC [/mm] gibt, so dass [mm] f(z)=f(z+w_1)=f(z+w_2) [/mm] für alle [mm] z \in \IC [/mm].

Klassifiziere alle holomorphen doppelt periodischen Funktionen [mm] \IC \to \IC [/mm]

Hi Ihr,

stehen bei der Aufgabe etwas auf dem Schlauch. Vielleicht kann irgendjemand einen Ansatz liefern.

Wäre super!

Tausend Dank und liebe Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Periodische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Mi 14.06.2006
Autor: AT-Colt

Hallo Du,

holomorph auf ganz [mm] \IC [/mm] bedeutet ja, dass die Funktion ganz ist. Habt ihr da schon Sätze drüber? Identitätssatz \ Folgerungen aus Beschränktheit und so?

Wenn [mm] $w_{1}, w_{2} \in \IC$ [/mm] linear unabhängig sind, spannen sie ganz [mm] \IC [/mm] auf, also gibt es quasi zwei Geraden, auf denen die Funktion jeweils [mm] $w_{i}$-periodisch [/mm] sind.

Jetzt überleg Dir mal, ob in so einer Raute [mm] $M:=\{z \in \IC | z = z_{0}+\lambda_{1}w_{1}+\lambda_{2}w_{2}, \lambda_{i} \in [0,1]\}$ [/mm] alle Werte von [mm] \IC [/mm] angenommen werden können, oder ob es mehr als einen Wert geben könnte, der nicht angenommen wird.

Ich hoffe, das hilft Dir erstmal etwas weiter.

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]