www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Perfekte Zahlen
Perfekte Zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Perfekte Zahlen: die höheren Wesen der math.
Status: (Frage) beantwortet Status 
Datum: 10:56 Fr 06.05.2011
Autor: clemenum

Aufgabe
Es sei [mm] $p\in \mathbb{P}$ [/mm] so gewählt, dass auch [mm] $2^p-1\in \mathbb{P}$ [/mm] ist. Man zeige nun, dass die Bedingung $n:= [mm] 2^{p-1}(2^p-1)\Rightarrow \sum_{d|n}d [/mm] = 2n $ stets erfüllt ist.

Ich habe Beispiele gefunden.
So ist etwa $8128 = [mm] 1+2+2^2+2^3+2^4+2^5+2^6+2\cdot127 +2^2\cdot [/mm] 127 [mm] +2^3^\cdot [/mm] 127 + [mm] 2^4^\cdot [/mm] 127 + [mm] 2^5^\cdot [/mm] 127 + 127 $. Also ist hier erfüllt, dass die Summe der Teiler dieser Zahl, außer die  Zahl selbst, sich wieder selbst ergibt (ich finde diese Eigenschaft wunderschön).

Aus diesem Beispiel sollte sich meiner Meinung nach ein Lösungsschema ableiten lassen. Jedoch gilt ja in der Voraussetzung, dass [mm] $2^p-1$ [/mm] auch prim sein muss. D.h., es ist unmöglich in weitere (Prim-)Faktoren zu zerlegen. Aber dann kann man doch auch nicht die Teiler (allgemein) addieren!?

Könnt ihr mir einen Tipp geben, wie ich die Teiler von $n$ allgemein herleiten könnte?


        
Bezug
Perfekte Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:21 Fr 06.05.2011
Autor: statler

Hallo!

> Es sei [mm]p\in \mathbb{P}[/mm] so gewählt, dass auch [mm]2^p-1\in \mathbb{P}[/mm]
> ist. Man zeige nun, dass die Bedingung [mm]n:= 2^{p-1}(2^p-1)\Rightarrow \sum_{d|n}d = 2n[/mm]
> stets erfüllt ist.
>  Ich habe Beispiele gefunden.
> So ist etwa [mm]8128 = 1+2+2^2+2^3+2^4+2^5+2^6+2\cdot127 +2^2\cdot 127 +2^3^\cdot 127 + 2^4^\cdot 127 + 2^5^\cdot 127 + 127 [/mm].
> Also ist hier erfüllt, dass die Summe der Teiler dieser
> Zahl, außer die  Zahl selbst, sich wieder selbst ergibt
> (ich finde diese Eigenschaft wunderschön).
>
> Aus diesem Beispiel sollte sich meiner Meinung nach ein
> Lösungsschema ableiten lassen. Jedoch gilt ja in der
> Voraussetzung, dass [mm]2^p-1[/mm] auch prim sein muss. D.h., es ist
> unmöglich in weitere (Prim-)Faktoren zu zerlegen. Aber
> dann kann man doch auch nicht die Teiler (allgemein)
> addieren!?
>
> Könnt ihr mir einen Tipp geben, wie ich die Teiler von [mm]n[/mm]
> allgemein herleiten könnte?

Naja, die Teiler zerfallen in 2 disjunkte Untermengen: Sie können [mm] 2^{p}-1 [/mm] als Faktor enthalten oder nicht. Eben, weil [mm] 2^{p}-1 [/mm] auch wieder prim sein soll. Und dann kannst du mit der geometrischen Summenformel rechnen.

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]