www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Partielle integration
Partielle integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Di 25.03.2014
Autor: xxela89xx

Aufgabe
[mm] \integral_{1}^{e} [/mm] 2xlogxdx    Mit partieller Integration

Hallo,

habe versucht diese Aufgabe zu lösen. Stimmt das so?
[mm] U=(x^2)+1 [/mm]
U'=2x
V=log(x)
V'=1/x

[mm] ((X^2)+1) [/mm] * log(x) - [mm] \integral_{}{} \bruch{(x^2)+1}{x} [/mm]

Kann man das jetzt so integrieren, dass der arctan rauskommt oder wie man macht man das?
Gruß

        
Bezug
Partielle integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Di 25.03.2014
Autor: Sax

Hi,

> [mm]\integral_{1}^{e}[/mm] 2xlogxdx    Mit partieller Integration
>  Hallo,
>  
> habe versucht diese Aufgabe zu lösen. Stimmt das so?
>  [mm]U=(x^2)+1[/mm]
> U'=2x
>  V=log(x)
>  V'=1/x
>  
> [mm]((X^2)+1)[/mm] * log(x) - [mm]\integral_{}{} \bruch{(x^2)+1}{x}[/mm]
>  
> Kann man das jetzt so integrieren, dass der arctan
> rauskommt oder wie man macht man das?
>  Gruß

kann man 3 und 4 so addieren, dass 5 rauskommt ?

Du musst die entstandene Integrandenfunktion ausdividieren und die zwei Summanden einzeln integrieren. Dann zusammenfassen.

Bemerkung 1
Jede Stammfunktion u von u' ist geeignet, du kannst also auch eine einfachere nehmen

Bemerkung 2
Dies hier ist kein Schmierblatt, wo man mal eben so für sich schlampig etwas hinkritzelt.
Deine letzte Formelzeile ist keine Gleichung, Integrationsgrenzen fehlen, dx fehlt, ...

Gruß Sax.


Bezug
                
Bezug
Partielle integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 Di 25.03.2014
Autor: xxela89xx

Hi,

= [mm] (x^2)*log [/mm] x [mm] -((1/3x^3)+x)*logx [/mm]
[mm] =((x^2))+1-(1/3x^3)+x)*logx [/mm]

So?

Lg

Bezug
                        
Bezug
Partielle integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:48 Di 25.03.2014
Autor: leduart

Hallo,
das ist sehr falsch in deinem Integral  steht doch einfach  x+1/x wenn du den Bruch auflöst. und beachte den anderen post von mir.
Gruß leduart

Bezug
        
Bezug
Partielle integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Di 25.03.2014
Autor: leduart

Hallo
u'=2x , [mm] u=x^2 [/mm] warum nimmst du [mm] x^2+1? [/mm]
das ist nicht sinnvoll.
Dann wird dein Integral auch viel einfacher.
Gruss leduart

Bezug
                
Bezug
Partielle integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 Mi 26.03.2014
Autor: xxela89xx

Hallo,

ich habe das jetzt so gemacht:
U=log(x)
U'=1/x
[mm] V=x^2 [/mm]
V'=2x

[mm] =log(x)*x^2-\integral_{}{}(1/x)*x^2 [/mm] dx
[mm] =log(x)*x^2-\integral_{}{}x [/mm] dx
Und dann die integrationsgrenzen einsetzen und subtrahieren. Oder?

Gruß

Bezug
                        
Bezug
Partielle integration: Integral lösen
Status: (Antwort) fertig Status 
Datum: 13:10 Mi 26.03.2014
Autor: Roadrunner

Hallo xxela89xx!


> ich habe das jetzt so gemacht:
>  U=log(x)
>  U'=1/x
>  [mm]V=x^2[/mm]
>  V'=2x

[ok]


> [mm]=log(x)*x^2-\integral_{}{}(1/x)*x^2[/mm] dx
> [mm]=log(x)*x^2-\integral_{}{}x[/mm] dx
> Und dann die integrationsgrenzen einsetzen und
> subtrahieren.

Nein, erst einmal musst Du das hintere Integral lösen, bevor Du die Grenzen einsetzt.


Gruß vom
Roadrunner

Bezug
                                
Bezug
Partielle integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 Mi 26.03.2014
Autor: xxela89xx

Hi,

ja, meine ich ja, tut mir leid, habe den Rest nicht aufgeschrieben. Also ich meinte natürlich, erst integrieren, somit hat man
[mm] Log(x)*x^2-1/2x^2 [/mm] und dann die Grenzen e und 1 einsetzen und subtrahieren. Ich habe dann ungefähr 3,2 raus. Stimmr das so?

Gruß

Bezug
                                        
Bezug
Partielle integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Mi 26.03.2014
Autor: reverend

Hallo,

> ja, meine ich ja, tut mir leid, habe den Rest nicht
> aufgeschrieben. Also ich meinte natürlich, erst
> integrieren, somit hat man
> [mm]Log(x)*x^2-1/2x^2[/mm] und dann die Grenzen e und 1 einsetzen
> und subtrahieren. Ich habe dann ungefähr 3,2 raus. Stimmr
> das so?

Nein, überhaupt nicht.
Außerdem sollst Du das Ergebnis sicher genau angeben, dafür brauchst Du keinen Taschenrechner.

[mm] \cdots=\bruch{1}{2}(e^2+1) [/mm]

Im übrigen ist das ingesamt alles nicht annähernd schlüssig aufgeschrieben, sondern ziemlich hingerotzt. Ich würde Dir allein deswegen mindestens die Hälfte der Punkte abziehen.

Grüße
reverend

Bezug
                                                
Bezug
Partielle integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Mi 26.03.2014
Autor: xxela89xx

Hi,

überhaupt nicht? Alles war falsch oder was? was meinst du mit [mm] ...=1/2(e^2+1)? [/mm] Genau, ich muss das sicher genau angeben, daher frage ich auch!

Gruß

Bezug
                                                        
Bezug
Partielle integration: Stammfunktion okay
Status: (Antwort) fertig Status 
Datum: 13:28 Mi 26.03.2014
Autor: Roadrunner

Hallo xxela89xx!


> überhaupt nicht? Alles war falsch oder was?

Nein, Deine Stammfunktion ist korrekt. Jedoch nicht das Ergebnis.


> was meinst du mit [mm]...=1/2(e^2+1)?[/mm]

Das ist das exakte Ergebnis des gesuchten Integrals. Dies entspricht einem Wert von [mm] $\approx [/mm] \ 4{,}19$ .


Gruß vom
Roadrunner

Bezug
                                                                
Bezug
Partielle integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Mi 26.03.2014
Autor: xxela89xx

Hallo,

ich hatte ja [mm] log(x)*(x^2)-(1/2x^2) [/mm] raus. Wenn ich nun für x einmal e und dann 1 einsetze und diese subtrahiere bekomme ich also das Ergebnis raus? Oder habe ich mich irgendwo vertan?

Gruß

Bezug
                                                                        
Bezug
Partielle integration: vorrechnen!
Status: (Antwort) fertig Status 
Datum: 13:34 Mi 26.03.2014
Autor: Roadrunner

Hallo xxela89xx!


> ich hatte ja [mm]log(x)*(x^2)-(1/2x^2)[/mm] raus.

[ok]


> Wenn ich nun für x einmal e und dann 1 einsetze und diese subtrahiere
> bekomme ich also das Ergebnis raus?

Welches jetzt?


> Oder habe ich mich irgendwo vertan?

Wenn Deine Lösung [mm] $\approx [/mm] \ 3{,}2$ bleibt: offensichtlich ja.
Rechne vor ...


Gruß vom
Roadrunner

Bezug
                                                                                
Bezug
Partielle integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Mi 26.03.2014
Autor: xxela89xx

Hallo,

also [mm] (log(e)*e^2-1/2*(e)^2)-(log(1)*1^2-(1/2)*1^2) [/mm]
=1*7,389-3,69-1/2
=3,2

Gruß

Bezug
                                                                                        
Bezug
Partielle integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Mi 26.03.2014
Autor: fred97


> Hallo,
>  
> also [mm](log(e)*e^2-1/2*(e)^2)-(log(1)*1^2-(1/2)*1^2)[/mm]
>  =1*7,389-3,69-1/2
>  =3,2

Das ist doch, mit Verlaub, völlig krank, was Du da treibst !

1. Lass doch die bescheuerten Dezimalzahlen weg .

2. Was die Anzahl der Nachkommastellen angeht, bist Du die Konsequenz höchstpersönlich: einmal 3 Stellen nach dem Komma, dann 2, dann 1 ???

3. ganz am Ende sollte +1/2 stat -1/2 stehen

4. 3,2 ist falsch

5. Das Ergebnis lautet: [mm] \bruch{1}{2}(e^2+1) [/mm] und das ist ungefähr = 4,193762....

FRED

>  
> Gruß


Bezug
                                                                                                
Bezug
Partielle integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Mi 26.03.2014
Autor: xxela89xx

Ok, danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]