www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle, bzw. Totale Diff
Partielle, bzw. Totale Diff < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle, bzw. Totale Diff: Differnzierbarkeit
Status: (Frage) beantwortet Status 
Datum: 19:09 Sa 11.06.2011
Autor: zoj

Aufgabe
[mm] f(n)=\begin{cases} \bruch{x^{2}y^{4}}{x^{2}+y^{4}}, & \mbox{für } (x,y) \not= (0,0) \mbox{} \\ 0, & \mbox{für } (x,y)=(0,0) \mbox{ ungerade} \end{cases} [/mm]

In welchen Punkten ist f partiell bzw. total differenzierbar? Berechnen Sie jeweils die entsprechenden Ableitungen.

Mein Problem bei dieser Aufgabe ist, dass ich nicht weiß, wie man vorgehen muss.
Um die Vorgehenweise zu erfahren, habe ich mir eine Mathematische Formelsammlung von Papula ausgeliehen.
Ich muss es lernen aus bem Buch zu verstehen.

Dort stehen unter "Partielle Ableitungen" folgende Formeln:

[mm] f_{x}(x,y) [/mm] = [mm] \limes_{\Delta x\rightarrow 0} \bruch{f(x + \Delta x;y)-f(x;y)}{\Delta x} [/mm]
[mm] f_{y}(x,y) [/mm] = [mm] \limes_{\Delta y\rightarrow 0} \bruch{f(x;y + \Delta y)-f(x;y)}{\Delta y} [/mm]

D.h wenn die Grenzwerte beider partieller Ableitungen erster Ordnung in den Punkt (0,0) den selben Funktionswert haben, ist f in dem Punkt (0,0) partiell Differenzierbar.
Stimmt das?

Umgesetzt sieht meine Lösung so aus:
[mm] f_{x}(x,y) [/mm] = [mm] \limes_{\Delta x\rightarrow 0} \bruch{f(x + \Delta x;y)-f(x;y)}{\Delta x} [/mm] = [mm] \limes_{\Delta x\rightarrow 0} \bruch{\bruch{(0 + \Delta x)^{2}(0)}{(0 + \Delta x)^{2}+(0)}}{\Delta x} [/mm] = 0

[mm] f_{y}(x,y) [/mm] = [mm] \limes_{\Delta y\rightarrow 0} \bruch{f(x;y +\Delta y)-f(x;y)}{\Delta y} [/mm] = [mm] \limes_{\Delta y\rightarrow 0} \bruch{\bruch{(0)(0+ \Delta y)^{4}}{(0)+(0+ \Delta y)^{4}}}{\Delta y} [/mm] = 0

Somit stimmt der Grenzwert beider partieller Ableitungen überein und f wäre demnach partiell differenzierbar in (0,0).

Ist es soweit richtig?

Jetzt noch eine Verständnis-Frage: Bei der Grenzwert-Betrachtung steht im Nenner der Formel immer ein [mm] \Delta [/mm] * Variable.
Wenn der Grenzwert gegen Null geht, so geht der Nenner gegen Null und somit auch der gesammte Ausdruck.
Demnach ist der Grenzwert beliebiger Funktionen Null, wenn der Grenzwert gegen Null geht.
Das kann aber nicht sein, den es muss auch Funktionen geben, die im Ursprung nicht partiell differenzierbar sind.

Habe ich was falsch interpretiert?
Klärt mich auf




        
Bezug
Partielle, bzw. Totale Diff: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 So 12.06.2011
Autor: MathePower

Hallo zoj,

> [mm]f(n)=\begin{cases} \bruch{x^{2}y^{4}}{x^{2}+y^{4}}, & \mbox{für } (x,y) \not= (0,0) \mbox{} \\ 0, & \mbox{für } (x,y)=(0,0) \mbox{ ungerade} \end{cases}[/mm]
>  
> In welchen Punkten ist f partiell bzw. total
> differenzierbar? Berechnen Sie jeweils die entsprechenden
> Ableitungen.
>  Mein Problem bei dieser Aufgabe ist, dass ich nicht weiß,
> wie man vorgehen muss.
>  Um die Vorgehenweise zu erfahren, habe ich mir eine
> Mathematische Formelsammlung von Papula ausgeliehen.
> Ich muss es lernen aus bem Buch zu verstehen.
>  
> Dort stehen unter "Partielle Ableitungen" folgende
> Formeln:
>  
> [mm]f_{x}(x,y)[/mm] = [mm]\limes_{\Delta x\rightarrow 0} \bruch{f(x + \Delta x;y)-f(x;y)}{\Delta x}[/mm]
>  
> [mm]f_{y}(x,y)[/mm] = [mm]\limes_{\Delta y\rightarrow 0} \bruch{f(x;y + \Delta y)-f(x;y)}{\Delta y}[/mm]
>  
> D.h wenn die Grenzwerte beider partieller Ableitungen
> erster Ordnung in den Punkt (0,0) den selben Funktionswert
> haben, ist f in dem Punkt (0,0) partiell Differenzierbar.
>  Stimmt das?


Mit den Formeln berechnest Du doch erst
die partiellen Ableitungen für [mm]\left(x,y\right) \not= \left(0,0\right)[/mm].

Dann erst kannst Du den Grenzwert für [mm]\left(x,y\right) \to \left(0,0\right)[/mm] berechnen.


>  
> Umgesetzt sieht meine Lösung so aus:
>  [mm]f_{x}(x,y)[/mm] = [mm]\limes_{\Delta x\rightarrow 0} \bruch{f(x + \Delta x;y)-f(x;y)}{\Delta x}[/mm]
> = [mm]\limes_{\Delta x\rightarrow 0} \bruch{\bruch{(0 + \Delta x)^{2}(0)}{(0 + \Delta x)^{2}+(0)}}{\Delta x}[/mm]
> = 0
>  
> [mm]f_{y}(x,y)[/mm] = [mm]\limes_{\Delta y\rightarrow 0} \bruch{f(x;y +\Delta y)-f(x;y)}{\Delta y}[/mm]
> = [mm]\limes_{\Delta y\rightarrow 0} \bruch{\bruch{(0)(0+ \Delta y)^{4}}{(0)+(0+ \Delta y)^{4}}}{\Delta y}[/mm]
> = 0
>  
> Somit stimmt der Grenzwert beider partieller Ableitungen
> überein und f wäre demnach partiell differenzierbar in
> (0,0).
>  
> Ist es soweit richtig?
>  
> Jetzt noch eine Verständnis-Frage: Bei der
> Grenzwert-Betrachtung steht im Nenner der Formel immer ein
> [mm]\Delta[/mm] * Variable.
> Wenn der Grenzwert gegen Null geht, so geht der Nenner
> gegen Null und somit auch der gesammte Ausdruck.
>  Demnach ist der Grenzwert beliebiger Funktionen Null, wenn
> der Grenzwert gegen Null geht.
>  Das kann aber nicht sein, den es muss auch Funktionen
> geben, die im Ursprung nicht partiell differenzierbar
> sind.
>  
> Habe ich was falsch interpretiert?
>  Klärt mich auf
>  


Gruss
MathePower
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]