www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Partielle Integration
Partielle Integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Mo 16.05.2011
Autor: mathefreak89

Aufgabe
[mm] \integral_{}^{} sin^2(a)\, [/mm] d(a)

Hallöchen:)

Ich steh bei obiger Aufgabe ein wenig auf dem Schlauch und finde keinen Ansatz..
Hab es jetz probiert indem ich [mm] sin^2(a) [/mm] umgeschrieben habe zu sin(a)*sin(a) was mich dann zu einer endlosschleife geführt hat xD

Dann habe ich es probiert als [mm] sin^2(a)*1 [/mm] zu schreiben wobei ich dann

[mm] u=sin^2(a) [/mm]  v´=1 gesetz habe was mich zu


[mm] =sin^2(a) -\integral_{}^{} x*2sin(a)*cos(a)\, [/mm] dx  geführt hat was auch irgendwie nich so hilfreich ist -.-

Bitte rettet mich xD

mfg mathefreak

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 16.05.2011
Autor: kamaleonti

Moin,
> [mm]\integral_{}^{} sin^2(a)\,[/mm] d(a)
>  Hallöchen:)
>  
> Ich steh bei obiger Aufgabe ein wenig auf dem Schlauch und
> finde keinen Ansatz..
>  Hab es jetz probiert indem ich [mm]sin^2(a)[/mm] umgeschrieben habe
> zu sin(a)*sin(a) was mich dann zu einer endlosschleife
> geführt hat xD
>  
> Dann habe ich es probiert als [mm]sin^2(a)*1[/mm] zu schreiben wobei
> ich dann
>  
> [mm]u=sin^2(a)[/mm]  v´=1 gesetz habe was mich zu

Setze besser [mm] u:=\sin(x) [/mm] und [mm] v'(x):=\sin(x) [/mm] und verwende nach der partiellen Integration die Identität [mm] \sin^2(x)+\cos^2(x)=1 [/mm]

>
>
> [mm]=sin^2(a) -\integral_{}^{} x*2sin(a)*cos(a)\,[/mm] dx  geführt
> hat was auch irgendwie nich so hilfreich ist -.-
>  
> Bitte rettet mich xD
>  
> mfg mathefreak

LG

Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Mo 16.05.2011
Autor: mathefreak89

Aber wenn ich das wie Vorgeschlagen mache erhalte ich doch

[mm] -cos(a)*sin(a)-\integral_{}^{} -cos(a)*cos(a)\, [/mm] d

was ja leider irgendwie nich der vorgeschlagenen form entspricht?xD

oder hab ich einen fehler bei der Anwendung gemacht?

Bezug
                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mo 16.05.2011
Autor: schachuzipus

Hallo mathefreak89,

> Aber wenn ich das wie Vorgeschlagen mache erhalte ich doch
>
> [mm]-cos(a)*sin(a)-\integral_{}^{} -cos(a)*cos(a)\,[/mm] d[mm]\red{a}[/mm] [ok]

Also [mm]\int{\sin^2(\alpha) \ d\alpha}=-\sin(\alpha)\cdot{}\cos(\alpha)+\int{\cos^2(\alpha) \ d\alpha}[/mm]

Nun die Identität: [mm]\sin^2(\alpha)+\cos^2(\alpha)=1[/mm], also [mm]\cos^2(\alpha)=1-\sin^2(\alpha)[/mm]

Setze das im hinteren Integral ein, dann kannst du schlussendlich die Gleichung nach [mm]\int{\sin^2(\alpha) \ d\alpha}[/mm] auflösen.

>
> was ja leider irgendwie nich der vorgeschlagenen form
> entspricht?xD
>
> oder hab ich einen fehler bei der Anwendung gemacht?

Nein, bisher ist alles ok, rechne nun weiter

Gruß

schachuzipus


Bezug
                                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Mo 16.05.2011
Autor: mathefreak89

soo

ich hab dann ja


[mm] \integral_{}^{} sin^2(a)\, da=-sin(a)cos(a)+\integral_{}^{} 1-sin^2(a)\, [/mm] dx

dann habe ich es wie folgt umgeschrieben


[mm] \integral_{}^{} sin^2(a)\, da=-sin(a)cos(a)+\integral_{}^{}1da-\integral_{}^{} sin^2(a)\, [/mm] da

also:

[mm] 2*\integral_{}^{} sin^2(a)\, [/mm] da=-sin(a)cos(a)+a

was mich zu der Stammfunktion:

[mm] F(a)=\bruch{1}{2}*a+\bruch{1}{2}*-cos(a)sin(a)+c [/mm] führt

Alles richtig?

Wenn ja ,wäre ich niemals darauf gekommen weil ich den linken Teil der Gleichung überhaupt nicht beachtet habe^^

UNd viele dank

Bezug
                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Mo 16.05.2011
Autor: schachuzipus

Hallo nochmal,

> soo
>
> ich hab dann ja
>
>
> [mm]\integral_{}^{} sin^2(a)\, da=-sin(a)cos(a)+\integral_{}^{} 1-sin^2(a)\,[/mm]
> dx
>
> dann habe ich es wie folgt umgeschrieben
>
>
> [mm]\integral_{}^{} sin^2(a)\, da=-sin(a)cos(a)+\integral_{}^{}1da-\integral_{}^{} sin^2(a)\,[/mm] [mm]\red{da}[/mm] [ok]
> da
>
> also:
>
> [mm]2*\integral_{}^{} sin^2(a)\,[/mm] da=-sin(a)cos(a)+a [ok]
>
> was mich zu der Stammfunktion:
>
> [mm]F(a)=\bruch{1}{2}*a+\bruch{1}{2}*-cos(a)sin(a)+c[/mm] führt [ok]
>
> Alles richtig?

Ja!

>
> Wenn ja ,wäre ich niemals darauf gekommen weil ich den
> linken Teil der Gleichung überhaupt nicht beachtet habe^^

Jo, das ist so ein Standardtrick, den es sich zu merken lohnt.

Nun hast du ihn einmal gesehen und selber durchgerechnet, so dass du beim nächsten Mal vllt. ganz von selbst drauf kommst ...

>
> UNd viele dank

Gruß

schachuzipus


Bezug
                                                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Mo 16.05.2011
Autor: mathefreak89

ich hoffe es doch danke euch :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]