www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Partielle Integration
Partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Di 02.02.2010
Autor: BlackBalloon

Aufgabe
Bestimmen Sie das Integral durch zweimalige Anwendung der Produktintegration.

[mm] \integral_{\pi}^{-\pi}{x^{2}*cos(x) dx} [/mm]

Hallo,

ich bin mir nicht sicher, ob ich diese Aufgabe richtig gelöst habe, denn ich habe doch noch ein paar Probleme bei der partiellen Integration. Es wäre nett, wenn jemand über meinen Lösungsweg schauen würde und mir sagen könnte, ob dass so richtig ist.

[mm] \integral_{\pi}^{-\pi}{x^{2}*cos(x) dx}= [/mm]  
[mm] (u=x^{2}; [/mm] u'=2x; v'=cos x; v= sin x)
[mm] [x^{2}*sin(x)]^{-\pi}_{\pi} [/mm] - [mm] \integral_{\pi}^{-\pi}{2x*sin(x) dx}= [/mm]
(u=2x; u'=2; v'=sin x; v=-cos x)
[mm] [x^{2}*sin(x)]^{-\pi}_{\pi}-[2x*(-cos(x))]^{-\pi}_{\pi} [/mm] - [mm] \integral_{\pi}^{-\pi}{2*(-cos(x)) dx} [/mm]
[mm] =0-[-2\pi-2\pi]-[2-2] [/mm]
[mm] =+4\pi [/mm]

Dankeschön im Voraus

Lieben Gruß
Nina



        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Di 02.02.2010
Autor: rainerS

Hallo Nina!

> Bestimmen Sie das Integral durch zweimalige Anwendung der
> Produktintegration.
>  
> [mm]\integral_{\pi}^{-\pi}{x^{2}*cos(x) dx}[/mm]
>  Hallo,
>  
> ich bin mir nicht sicher, ob ich diese Aufgabe richtig
> gelöst habe, denn ich habe doch noch ein paar Probleme bei
> der partiellen Integration. Es wäre nett, wenn jemand
> über meinen Lösungsweg schauen würde und mir sagen
> könnte, ob dass so richtig ist.
>
> [mm]\integral_{\pi}^{-\pi}{x^{2}*cos(x) dx}=[/mm]  
> [mm](u=x^{2}; u'=2x; v'=cos x; v= sin x)[/mm]
>  [mm][x^{2}*sin(x)]^{-\pi}_{\pi} - \integral_{\pi}^{-\pi}{2x*sin(x) dx}=[/mm]
>  $(u=2x; u'=2; v'=sin x; v=-cos x)$
>  [mm][x^{2}*sin(x)]^{-\pi}_{\pi}-[2x*(-cos(x))]^{-\pi}_{\pi} - \integral_{\pi}^{-\pi}{2*(-cos(x)) dx}[/mm]

Fast: du hast eine Klammer vergessen

[mm] [x^{2}*sin(x)]^{-\pi}_{\pi}- \left([2x*(-cos(x))]^{-\pi}_{\pi} - \integral_{\pi}^{-\pi}{2*(-cos(x)) dx} \right) [/mm]

[mm] [x^{2}*sin(x)]^{-\pi}_{\pi}-[2x*(-cos(x))]^{-\pi}_{\pi} + \integral_{\pi}^{-\pi}2*(-cos(x)) dx} [/mm]

[mm] [x^{2}*sin(x)]^{-\pi}_{\pi}-[2x*(-cos(x))]^{-\pi}_{\pi} + [-2*\sin x ]^{-\pi}_{\pi} [/mm]

> [mm]=0-[-2\pi-2\pi]-[2-2][/mm]

In der letzten Klammer steht dann aber 0-0, nicht 2-2 !

>  [mm]=+4\pi[/mm]

Das ist richtig.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]