www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Partielle Integration
Partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: *Verzweiflung* :(
Status: (Frage) beantwortet Status 
Datum: 17:45 Sa 16.12.2006
Autor: jane882

Aufgabe
...

Zeige mittels partieller Integration,dass F(x)= (-8-4x)*e ^-x eine Stammfunktion von f (f(x)= (4+4x)*e^-x) ist.

Was nenn ich am besten u´und was v?
Also ich versuchs einfach mal:(
u´= e^-x, u= -e^-x
v= (4+4x), v´= 4

-e^-x* (4+4x)- Integral aus -e^-x*4
-e^-x(4-4+4x) ?

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Sa 16.12.2006
Autor: ullim

Hi,

> ...
>  Zeige mittels partieller Integration,dass F(x)= (-8-4x)*e
> ^-x eine Stammfunktion von f (f(x)= (4+4x)*e^-x) ist.
>
> Was nenn ich am besten u´und was v?
>  Also ich versuchs einfach mal:(
>  u´= e^-x, u= -e^-x
>  v= (4+4x), v´= 4
>  
> -e^-x* (4+4x)- Integral aus -e^-x*4

[mm] \integral_{}^{}{-4e^{-x} dx}=4e^{-x} [/mm] und das wars, jetzt nur noch zusammenfassen

>  -e^-x(4-4+4x) ?  

mfg ullim

Bezug
                
Bezug
Partielle Integration: Richtig?
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 16.12.2006
Autor: jane882

Aufgabe
...

Ja aber  warum ergibt -4*e^-x= 4e^-x ?

also dann:
-e^-x* (4+4x)- Integral aus -4*e^-x
= -e^-x * (4+4x)- Integral aus 4* e^-x
= e^-x (-4* (4+4x)???

Danke:)

Bezug
                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Sa 16.12.2006
Autor: ullim

Hi,



> ...
>  Ja aber  warum ergibt -4*e^-x= 4e^-x ?
>
> also dann:
>  -e^-x* (4+4x)- Integral aus -4*e^-x

[mm] =-e^{-x}(4+4x)-(4e^{-x})=-e^{-x}(4+4x)-4e^{-x}=-8e^{-x}-4xe^{-x} [/mm]

Einmal steht ein Minus vor dem Integral und das Integral selbst ergibt [mm] 4e^{-x} [/mm]

Hilf das?

>  = -e^-x * (4+4x)- Integral aus 4* e^-x
>  = e^-x (-4* (4+4x)???
>  
> Danke:)

mfg ullim

Bezug
                                
Bezug
Partielle Integration: Zwischenschritte?
Status: (Frage) beantwortet Status 
Datum: 20:14 Sa 16.12.2006
Autor: jane882

Aufgabe
...

den schritt verstehe ich nicht:

-e^-x (4+4x)-4e^-x

auf

-8e^-x-4xe^-x

Kannst du das mal mit Zwischenschritten machen:(

Bezug
                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Sa 16.12.2006
Autor: ullim

Hi,

[mm] =-e^{-x}(4+4x)-(4e^{-x})=-e^{-x}(4+4x)-4e^{-x}=-4e^{-x}-4xe^{-x}-4e^{-x}=-8e^{-x}-4xe^{-x} [/mm]

einfach ausmultiplizieren

mfg ullim

Bezug
                                
Bezug
Partielle Integration: Integral
Status: (Frage) beantwortet Status 
Datum: 20:16 Sa 16.12.2006
Autor: jane882

Aufgabe
...

aber wieso ergibt das integral 4e^-x ? ist das weil vor und hinter dem intergal ein - steht und - und -,+ ergibt?

Bezug
                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 20:33 Sa 16.12.2006
Autor: ullim

Hi,

[mm] \integral_{}^{}{-4e^{-x} dx}=4e^{-x}. [/mm] Du hast ja schon das Integral von [mm] e^{-x} [/mm] ausgerechnet und bist auf [mm] -e^{-x} [/mm] gekommen. Hier ist das genauso. Letzlich muss Du eine Variabelentransformation mit z=-x sowie dz=-dx durchführen und benutzten das das Integral von [mm] e^x [/mm]

[mm] e^x [/mm] ist.

mfg ullim



Bezug
                                                
Bezug
Partielle Integration: variable
Status: (Frage) beantwortet Status 
Datum: 20:38 Sa 16.12.2006
Autor: jane882

Aufgabe
...

Habe jetzt alles verstanden, außer das mit der Varibalentransformation?:(

Noch eine kleine Frage nebenbei: soll ich e-Terme?? also [mm] e^x, [/mm] e^-x,-e^-x immer v´ benennen? oder besser u ? bei der partiellen integration.

Danke:)

Bezug
                                                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Sa 16.12.2006
Autor: ullim

Hi,

zu Variablentransformation gilt folgendes wenn z=-x gilt.

Aus z=-x folgt dz=-dx, also


[mm] \integral_{}^{}{e^{-x} dx}=\integral_{}^{}{e^{z} (-dz)}=-\integral_{}^{}{e^{z} dz}=-e^z=-e^{-x} [/mm]

Deine Frage, ob man die e-Terme immer als u' benennen soll, kann man im allgemeinen nicht beantworten, das hängt immer von der Aufgabe ab.

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]