www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Partielle Differentiation
Partielle Differentiation < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Differentiation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Do 03.08.2006
Autor: Dr.Evil

Ich habe eine Frage zur partielle Differentiation:
Es sei f-> f(x(r,t),y(r,t),t)
dann dachte ich immer, dass:
[mm] \frac{d}{dt}f=\frac{\partial f}{\partial x}\frac{dx}{dt}+\frac{\partial f}{\partial y}\frac{dy}{dt}+\frac{\partial f}{\partial t} [/mm]

Weiterhin dachte ich aber, dass ja eigentlich: es sei g->g[x(r,t),y(r,t)]
[mm] \frac{\partial g}{\partial t}=\frac{\partial g}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial g}{\partial y}\frac{\partial y}{\partial t} [/mm]

Was ist denn dann aber das
[mm] \frac{\partial f}{\partial t} [/mm]
von Gleichung (1)? Wird hier a) nur das explizit vorkommende t abgeleitet oder b) auch die implizit, x(r,t) u. y(r,t) abgeleitet? Zweiteres (b) wuerde sich ja widersprechen...
Ist das nur eine schlampige Schreibweise und man meint im ersten Fall a), dass f partiell nach t abgeleitet wird und ALLE anderen Parameter konstant gehalten werden?

Fuer eine Antwort waere ich wirklich sehr dankbar, da mich das gerade sehr verwirrt...

ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Partielle Differentiation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Do 03.08.2006
Autor: tausi

Hallo!

Ja, das ist nur eine schlampige Schreibweise, du leitest einfach zuerst das f nach x, dann nach y und dann nach t ab. Den dritten Term in der ersten Summe ( [mm] \bruch{\partial f}{\partial t}) [/mm] berechnest du einfach so, dass du x und y in der Funktionsgleichung stehen lässt. Dann betrachtest du x und y wie konstanten und leitest nach t ab.

Viel Spaß beim Ausrechnen
Tausi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]