www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Diffbarkeit zeigen
Partielle Diffbarkeit zeigen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Diffbarkeit zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:20 Mi 30.07.2014
Autor: rollroll

Aufgabe
Sei [mm] f:IR^n [/mm] --> IR in 0 partiell diffbar mit f(0)=0 und sei [mm] g:IR^n [/mm] --> IR stetig in 0. Zeige, dass [mm] h:IR^n-->IR, [/mm] h(x)=f(x)g(x) in 0 partiell  diffbar ist und berechne grad h(0).

Hallo,

es ist im Nullpunkt:  [mm] \limes_{h\rightarrow0} \bruch{h(x+he_i)-h(x)}{h}= \limes_{h\rightarrow0} \bruch{f(he_i)}{h} [/mm] *  [mm] \limes_{h\rightarrow0} g(he_i) [/mm] = [mm] \bruch{\partial f}{\partial x_i}(0) [/mm] *  [mm] \limes_{h\rightarrow0} g(he_i) [/mm] und der rechte Faktor existiert, weil g stetig in 0 ist, stimmt das so? Dann wäre ja gradh(0)=0

        
Bezug
Partielle Diffbarkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:19 Do 31.07.2014
Autor: Marcel

Hallo,

> Sei [mm]f:IR^n[/mm] --> IR in 0 partiell diffbar mit f(0)=0 und sei
> [mm]g:IR^n[/mm] --> IR stetig in 0. Zeige, dass [mm]h:IR^n-->IR,[/mm]
> h(x)=f(x)g(x) in 0 partiell  diffbar ist und berechne grad
> h(0).
>  Hallo,
>  
> es ist im Nullpunkt:  [mm]\limes_{h\rightarrow0} \bruch{h(x+he_i)-h(x)}{h}= \limes_{h\rightarrow0} \bruch{f(he_i)}{h}[/mm] *  [mm]\limes_{h\rightarrow0} g(he_i)[/mm]

Warum schreibst Du immer [mm] $x\,$ [/mm] für [mm] $x=0\,,$ [/mm] anstatt dort direkt [mm] $0\,$ [/mm] zu schreiben?
Also: Anstatt zu sagen, es ist $x=0 [mm] \in \IR^n$ [/mm] und dann

    [mm] $\frac{\partial h(x)}{\partial x_i}=\limes_{h\rightarrow0} \bruch{h(x+he_i)-h(x)}{h}=...\,,$ [/mm]

schreibe doch direkt

    [mm] $\frac{\partial h(0)}{\partial x_i}=\limes_{h\rightarrow0} \bruch{h(0+he_i)-h(0)}{h}$ [/mm]

Wobei es hier auch einen formalen "Lapsus" gibt. Wenn Du die Funktion [mm] $h\,$ [/mm]
schon hast, dann solltest Du nicht mehr [mm] $h\,$ [/mm] als Variablenbezeichnung für
eine reelle Zahl (die gegen [mm] $0\,$ [/mm] laufen gelassen wird) nehmen. Schau'
mal, wie ich das unten schreibe - wenn Du dort das rote [mm] $t\,$ [/mm] durch [mm] $h\,$ [/mm] ersetzt,
dann sieht mindestens der Term nach dem ersten Gleichheitszeichen
merkwürdig aus. Zumal man auch fragen könnte, wie man denn die
Funktion [mm] $h\,$ [/mm] gegen Null laufen lassen solle?

> = [mm]\bruch{\partial f}{\partial x_i}(0)[/mm] *  [mm]\limes_{h\rightarrow0} g(he_i)[/mm] und der rechte Faktor
> existiert, weil g stetig in 0 ist, stimmt das so?

Ich rechne mal selbst

    [mm] $\frac{\partial h(0)}{\partial x_i}=\limes_{\red{t}\rightarrow0} \bruch{h(0+\red{t}e_i)-h(0)}{\red{t}}=\lim_{\red{t} \to 0}\frac{f(0+\red{t}*e_i)*g(0+\red{t}*e_i)-f(0)*g(0)}{\red{t}}=\lim_{\red{t} \to 0}\frac{f(0+\red{t}*e_i)}{\red{t}}*\lim_{\red{t} \to 0}g(\red{t}*e_i)=\frac{\partial f(0)}{\partial x_i}*g(0)=g(0)*\frac{\partial f(0)}{\partial x_i}$ [/mm]

gilt für alle $i [mm] \in \{1,...,n\}\,.$ [/mm]

Du hast also richtig gerechnet, Du solltest vielleicht bzgl.

    [mm] $\lim_{h \to 0}g(h*e_i)$ [/mm]

nur noch ergänzen, dass wir nicht nur die Existenz, sondern sogar den
Wert dieses Grenzwertes kennen: Es ist [mm] $g(0)\,$ [/mm] (mit $0 [mm] \in \IR^n$). [/mm]

> Dann wäre ja gradh(0)=0

Nein, es ist doch

    [mm] $\nabla h(0)=g(0)*\nabla f(0)\,.$ [/mm]

Etwa im Falle [mm] $g(0)=0\,$ [/mm] (das wissen wir aber nicht - es war nur [mm] $f(0)=0\,$ [/mm] gesagt!)
würde Deine Folgerung stimmen!

P.S. Schreibe doch bitte [mm] $\IR^n$ [/mm] und [mm] $\to$ [/mm] etc. mit dem Formeleditor. Es ist einfach
sehr viel angenehmer zu lesen. Und ich denke eigentlich, dass Du auch
schon lange genug dabei bist, um zu wissen, wo man die Befehle dazu
findet (ansonsten: es sind i.W. Latex-Befehle) bzw. wie man sie sich selbst
erarbeiten kann (auf Formeln klicken oder Mauszeiger drüberhalten oder ...).
Wenn es unbedingt nötig ist, kann ich Dir auch hier nochmal Links dazu
schreiben.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]