www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitungen
Partielle Ableitungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitungen: Augabe Nr.2
Status: (Frage) beantwortet Status 
Datum: 16:53 Fr 27.02.2009
Autor: ohlala

Aufgabe
Sei $ f: (x,y) [mm] \rightarrow [/mm] f(x,y)$ eine stetig differenzierbare Funktion. Drücken Sie das Resultat von
[mm] $\bruch{d}{dt} f(\integral_{t}^{2t} [/mm] k² [mm] e^k² [/mm] , [mm] dk,t²e^t)$ [/mm]
durch die partielle Ableitungen $ [mm] f_x$ [/mm] und [mm] $f_y [/mm] $ der Funktion f aus.

Also ich weiß,dass die Funktion f(x,y) aus [mm] $x=\integral_{t}^{2t} [/mm] k² [mm] e^k^2, [/mm] dk$ und $ [mm] y=t²e^t$ [/mm] besteht, aber wie schreib ich das dann,
also f(x,y)=...?
Dann habe ich gedacht muss ich hier die verallgemeinerte Kettenregel verwenden:
[mm] $\bruch{d}{dt} [/mm] f(x(t),y(t))= [mm] f_x(x(t),y(t))*x'(t)+ f_y(x(t),y(t))*y'(t)$ [/mm]

Ich habe für $ [mm] x(t)=\bruch{1}{4}(e^{2t}- e^t) [/mm]  und für [mm] y(t)=t²e^t [/mm] und als Ableitungen
[mm] x'(t)=\bruch{1}{2} e^{2t} -\bruch{1}{4} e^t [/mm]
[mm] y'(t)=e^t(t²+2t)$ [/mm]
raus.

stimmt das bis hier hin?

Danke für die hilfe und glg

        
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Fr 27.02.2009
Autor: pelzig


> Sei [mm]f: (x,y) \rightarrow f(x,y)[/mm] eine stetig
> differenzierbare Funktion.

Ich nehme an die bildet nach [mm] $\IR$ [/mm] ab... sollte man vielleicht mal erwähnen.

> Also ich weiß,dass die Funktion f(x,y) aus
> [mm]x=\integral_{t}^{2t} k² e^k^2, dk[/mm] und [mm]y=t²e^t[/mm] besteht, aber
> wie schreib ich das dann,
> also f(x,y)=...?

Verstehe die Frage nicht.

>  Dann habe ich gedacht muss ich hier die verallgemeinerte
> Kettenregel verwenden:
>  [mm]\bruch{d}{dt} f(x(t),y(t))= f_x(x(t),y(t))*x'(t)+ f_y(x(t),y(t))*y'(t)[/mm]

Richtig.

> Ich habe für $ [mm]x(t)=\bruch{1}{4}(e^{2t}- e^t)[/mm]  und für  [mm]y(t)=t²e^t[/mm]

Wie kommst du denn darauf?

> und als Ableitungen
>  [mm]x'(t)=\bruch{1}{2} e^{2t} -\bruch{1}{4} e^t[/mm]

Das stimmt auch nicht, wenn ich dein (falsches) x(t) zugrunde lege: [mm] $\frac{d}{dt}1/2e^{2t}=e^{2t}$. [/mm]

> [mm]y'(t)=e^t(t²+2t)$[/mm] raus.

Ok.

Gruß, Robert

Bezug
        
Bezug
Partielle Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 So 01.03.2009
Autor: ohlala

Aufgabe
Sei f:(x,y) [mm] $\rightarrow [/mm] f(x,y)$ eine stetige Funktion. Drücken Sie das Resultat von $ [mm] \bruch{d}{dt}f(\integral_{t}^{2t} k²{e^k}^{2}, [/mm] dk, [mm] t²e^t)$ [/mm] durch die partiellen Ableitungen [mm] $f_x$ [/mm] und [mm] $f_y$ [/mm] der Funktion f aus.

Ok, also jetzt hab ich dann doch keinen plan mehr wie man das rechnet, könnte mir bitte jemand eine "Anleitung" oder sowas schreiben bzw. ausführliche Tipps geben.

Vielen lieben dank jetzt schon :-)

Bezug
                
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Mo 02.03.2009
Autor: MathePower

Hallo ohlala,


> Sei f:(x,y) [mm]\rightarrow f(x,y)[/mm] eine stetige Funktion.
> Drücken Sie das Resultat von
> [mm]\bruch{d}{dt}f(\integral_{t}^{2t} k²{e^k}^{2}, dk, t²e^t)[/mm]
> durch die partiellen Ableitungen [mm]f_x[/mm] und [mm]f_y[/mm] der Funktion f
> aus.
>  Ok, also jetzt hab ich dann doch keinen plan mehr wie man
> das rechnet, könnte mir bitte jemand eine "Anleitung" oder
> sowas schreiben bzw. ausführliche Tipps geben.


Nach der Leibniz'schen Differentiationsformel ergibt sich:

[mm]\bruch{d}{dt}\left(\integral_{a\left(t\right)}^{b\left(t\right)}{g\left(k,t\right) \ dk}\right)=\integral_{a\left(t\right)}^{b\left(t\right)}{\bruch{\partial g\left(k,t\right)}{\partial t} \ dk}+\bruch{db\left(t\right)}{dt}*g\left(\ b\left(t\right),t \ \right)-\bruch{da\left(t\right)}{dt}*g\left(\ a\left(t\right),t \ \right)[/mm]


>  
> Vielen lieben dank jetzt schon :-)


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]