www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Partielle Ableitungen
Partielle Ableitungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:27 Mo 21.11.2005
Autor: danjo

Da bin ich mal wieder mit einer Aufgabe:

"Man bilde alle ersten partiellen Ableitunsfunktionen (auch oft als partielle Ableitungen erster Ordnung bezeichnet) von

a) z =  [mm] xe^{ \bruch{y}{x}} [/mm]

b) z =  x + [mm] sinx^{y} [/mm]                      "

Mein Lösungsversuch:

zu a) z'x =   [mm] \bruch{y}{x} [/mm] *  [mm] e^{ \bruch{y}{x} - 1} [/mm]
          für z'y habe ich das gleiche ergebnis

zu b) z'x= [y*( [mm] x+sinx)^{y-1} [/mm] * (1 + cosx)   ---> gehts noch weiter ?
         z'y= [y*( [mm] x+sinx)^{y-1} [/mm] * (cosx)          ----> gehts noch weiter ?

und sind die Ansätze überhaupt korrekt ?

Für Hilfe wäre ich sehr dankbar.

Gruß
Danjo

        
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mo 21.11.2005
Autor: djmatey

Hallo,
also ich bekomme folgende Ergebnisse:
a)
z'x = [mm] (1-\bruch{y}{x}) [/mm] * [mm] e^{\bruch{y}{x}} [/mm]
z'y = [mm] e^{\bruch{y}{x}} [/mm]
b)
z'x = 1+y* [mm] x^{y-1}*cos( x^{y}) [/mm]
z'y = ln(x)* [mm] x^{y}*cos( x^{y}) [/mm]

Leite z.B. die erste Funktion nach x ab, indem Du y als Konstante behandelst, und nach y, indem Du x als Konstante behandelst. Dann mit Hilfe der Ketten- und Produktregel ableiten.
Für die Ableitung  [mm] x^{y} [/mm] nach y schreibe
[mm] x^{y} [/mm] =  [mm] e^{ln( x^{y})} [/mm] =  [mm] e^{y*ln(x)} [/mm] und leite dann ab.
Hoffe, das hilft Dir!
Beste Grüße,
djmatey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]