www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitung
Partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:06 Mi 24.04.2013
Autor: Mopsi

Aufgabe
Ermittle die partiellen Ableitungen erster Ordnung von

1.
[mm]f(x,y) = (xy^3+2x^2y)ln(x^2+y^2+xy)[/mm]

2.
[mm]f(x%2Cy%2Cz)%20%3D%20sin(xe%5Ey%2Bz)(x%5E2%2By%5E2%2Bz%5E2)[/mm]



Schönen guten Abend :)

Zu 1:

Hier muss ich die Produktregel anwenden.

[mm] \frac{df}{dx} = (y^3+4xy)ln(x^2+y^2+xy) + (xy^32x^2y)* \frac{2x+y}{x^2+y^2+xy}[/mm]

Ist das soweit richtig, ich habe bist jetzt nur die PR angewendet?
Aber ich sehe nicht genau was man da nun kürzen kann bzw. wie ich weitermachen soll?

Mopsi

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Mi 24.04.2013
Autor: Adamantin


> Ermittle die partiellen Ableitungen erster Ordnung von
>  
> 1.
>  [mm]f(x,y) = (xy^3+2x^2y)ln(x^2+y^2+xy)[/mm]
>  
> 2.
>  
> [mm]f(x%2Cy%2Cz)%20%3D%20sin(xe%5Ey%2Bz)(x%5E2%2By%5E2%2Bz%5E2)[/mm]
>  
>
> Schönen guten Abend :)
>  
> Zu 1:
>  
> Hier muss ich die Produktregel anwenden.
>  
> [mm]\frac{df}{dx} = (y^3+4xy)ln(x^2+y^2+xy) + (xy^32x^2y)* \frac{2x+y}{x^2+y^2+xy}[/mm]
>  
> Ist das soweit richtig, ich habe bist jetzt nur die PR
> angewendet?
>  Aber ich sehe nicht genau was man da nun kürzen kann bzw.
> wie ich weitermachen soll?

Ahhh bitte bitte bei partiellen Ableitungen kein d sondern ein [mm] $\partial{}$, [/mm] das wärte schonmal gaaanz wichtig ;) Ansonsten ja, da du beim partiellen Ableiten jeweils alle bis auf eine gewünschte Variable konstant hälst, unterscheidet es sich prinzipiell nicht vom "ableiten" im eindimensionalen. Daher ist die Produktregel sicherlich richtig. Du hast allerdings in der Klammer nach dem ln ein Plus vergessen. Ansonsten ist da auch nicht mehr viel mit Zusammenfassen, dies verhindert der ln.

>  
> Mopsi


Bezug
                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:35 Mi 24.04.2013
Autor: Mopsi


> > Ermittle die partiellen Ableitungen erster Ordnung von
> >
> > 1.
> > [mm]f(x,y) = (xy^3+2x^2y)ln(x^2+y^2+xy)[/mm]
> >
> > 2.
> >
> >
> [mm]f(x%2Cy%2Cz)%20%3D%20sin(xe%5Ey%2Bz)(x%5E2%2By%5E2%2Bz%5E2)[/mm]
> >
> >
> > Schönen guten Abend :)
> >
> > Zu 1:
> >
> > Hier muss ich die Produktregel anwenden.
> >
> > [mm]\frac{df}{dx} = (y^3+4xy)ln(x^2+y^2+xy) + (xy^32x^2y)* \frac{2x+y}{x^2+y^2+xy}[/mm]

>

> >
> > Ist das soweit richtig, ich habe bist jetzt nur die PR
> > angewendet?
> > Aber ich sehe nicht genau was man da nun kürzen kann
> bzw.
> > wie ich weitermachen soll?

>

> Ahhh bitte bitte bei partiellen Ableitungen kein d sondern
> ein [mm]\partial{}[/mm], das wärte schonmal gaaanz wichtig ;)

Okay, merke ich mir :)

> Du hast allerdings in der Klammer nach dem ln ein
> Plus vergessen.

Tut mir Leid, ich sehe nicht genau wo ein Plus fehlt?

> Ansonsten ist da auch nicht mehr viel mit
> Zusammenfassen, dies verhindert der ln.

>
Super :)

[mm] \frac{\partial{f}}{\partial{y}} = (3y^2x+2x^2)ln(x^2+y^2+xy) + (xy^3+2x^2y)( \frac{2y+x}{x^2+y^2+xy})[/mm]

Ist das richtig?

​Mopsi
 

Bezug
                        
Bezug
Partielle Ableitung: das fehlende Plus
Status: (Antwort) fertig Status 
Datum: 01:12 Mi 24.04.2013
Autor: Loddar

Hallo Mopsi!


> > Du hast allerdings in der Klammer nach dem ln ein
> > Plus vergessen.
>
> Tut mir Leid, ich sehe nicht genau wo ein Plus fehlt?

Die letzte Klammer muss lauten [mm] $...+\left(xy^3 \ \red{+} \ 2x^2y\right)*...$ [/mm]



> [mm]\frac{\partial{f}}{\partial{y}} = (3y^2x+2x^2)ln(x^2+y^2+xy) + (xy^3+2x^2y)( \frac{2y+x}{x^2+y^2+xy})[/mm]

>

> Ist das richtig?

[daumenhoch] Das sieht gut aus!


Gruß
Loddar

Bezug
                                
Bezug
Partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:44 Mi 24.04.2013
Autor: Mopsi


> Hallo Mopsi!

>
>

> > > Du hast allerdings in der Klammer nach dem ln ein
> > > Plus vergessen.
> >
> > Tut mir Leid, ich sehe nicht genau wo ein Plus fehlt?

>

> Die letzte Klammer muss lauten [mm]...+\left(xy^3 \ \red{+} \ 2x^2y\right)*...[/mm]

Oh! Jetzt sehe ich es auch :-P
Danke :)
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]