www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Partielle Ableitung
Partielle Ableitung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 So 01.07.2012
Autor: dudu93

Hallo, ich habe Schwierigkeiten bei folgender partiellen Ableitung nach der Variabeln [mm] x_2: [/mm]

[mm] f_{x_2}(x_1x_2x_3) [/mm] = [mm] 2x_1x_3^2sin(x_1^2x_2^2)+2x_1^3x_2^2x_3^2cos(x_1^2x_2^2) [/mm]

Und zwar würde ich hier Produkt- sowie Kettenregel anwenden.

Produktregel ist ja bekannt als: u'*v + u*v'

Nur bin ich mir nicht sicher, welche Faktoren u und v bzw. u' und v' darstellen sollen. Beim eindimensionalen gab es damit keine Probleme. Doch hier komme ich durcheinander.

Wenn ich z.B. den ersten Teil betrachte:

[mm] 2x_1x_3^2sin(x_1^2x_2^2) [/mm] + [...]

Woher weiß man, was davon nun genau u und v ist? Genau so beim zweiten Teil der Funktion.

Über Hilfe wäre ich sehr dankbar, LG.

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 So 01.07.2012
Autor: MathePower

Hallo dudu93,

> Hallo, ich habe Schwierigkeiten bei folgender partiellen
> Ableitung nach der Variabeln [mm]x_2:[/mm]
>  
> [mm]f_{x_2}(x_1x_2x_3)[/mm] =
> [mm]2x_1x_3^2sin(x_1^2x_2^2)+2x_1^3x_2^2x_3^2cos(x_1^2x_2^2)[/mm]
>  
> Und zwar würde ich hier Produkt- sowie Kettenregel
> anwenden.
>
> Produktregel ist ja bekannt als: u'*v + u*v'
>  
> Nur bin ich mir nicht sicher, welche Faktoren u und v bzw.
> u' und v' darstellen sollen. Beim eindimensionalen gab es
> damit keine Probleme. Doch hier komme ich durcheinander.
>  
> Wenn ich z.B. den ersten Teil betrachte:
>  
> [mm]2x_1x_3^2sin(x_1^2x_2^2)[/mm] + [...]
>  
> Woher weiß man, was davon nun genau u und v ist? Genau so
> beim zweiten Teil der Funktion.
>

u und v kannst Du wählen, das Produkt muss eben diesen Summanden ergeben.


Eine geeignete Wahl ist hier z.B.

[mm]u\left(x_{1},x_{2},x_{3}\right)=2x_{1}x_{3}^{2}[/mm]

[mm]v\left(x_{1},x_{2},x_{3}\right)=\sin\left(x_{1}^{2}x_{2}^{2}\right)[/mm]


> Über Hilfe wäre ich sehr dankbar, LG.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]