www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Partielle Ableitung
Partielle Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Sa 26.07.2008
Autor: sara_99

Aufgabe
Berechnen Sie die ersten partiellen Ableitungen folgender Funktion:
f(x,y)= [mm] ((1+x^2+y^2)^{3/2}) [/mm] (arctan [mm] (\wurzel{(x^2+y^2)}). [/mm]

Hallo,
ich habe eine Frage zu dieser Ableitungsaufgabe bei der ich die Lösung nicht ganz nachvollziehen kann.

Die Ableitungen nach x und y sind ja gleich, nehmen wir jetzt beispielshalber die Ableitung nach x.  Hier muss man die Produktregel anwenden, den ersten Teil habe ich ja auch richtig (den ersten Term abgeleitet mal den mit arctan usw.).
Mir geht es jetzt eigentlich nur um den Teil, wo man arctan ableitet und - nach der Produktregel eben- den "vorderen Teil" übernimmt.
In der Lösung steht da dafür:
f'= [mm] x(1+x^2+y^2)^{1/2 }(3arctan (\wurzel{(x^2+y^2)} [/mm] + [mm] 1/\wurzel{(x^2+y^2)} [/mm]

Ich weiß nicht, wie man auf diesen zweiten Ableitungsteil kommt [mm] (x(1+x^2+y^2)(^{1/2})(1/\wurzel{(x^2+y^2)}. [/mm]
Ich habe dafür raus: [mm] ((1+x^2+y^2)^{3/2}) (1/1+x^2+y^2) [/mm]

Weil ich dachte, dass die Ableitung von arctan(x) ja [mm] 1/1+x^2 [/mm] ist?
Erkennt vielleicht jemand, wo mein Fehler liegt? Freue mich über jede Hilfe, danke!



        
Bezug
Partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Sa 26.07.2008
Autor: sara_99

Habe mich vertippt, meine Ableitung ist:
[mm] ((1+x^2+y^2)^{3/2}) (2x/1+x^2+y^2) [/mm]

Bezug
        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Sa 26.07.2008
Autor: MathePower

Hallo sara_99,

> Berechnen Sie die ersten partiellen Ableitungen folgender
> Funktion:
>  f(x,y)= [mm]((1+x^2+y^2)^{3/2})[/mm] (arctan [mm](\wurzel{(x^2+y^2)}).[/mm]
>  Hallo,
>  ich habe eine Frage zu dieser Ableitungsaufgabe bei der
> ich die Lösung nicht ganz nachvollziehen kann.
>  
> Die Ableitungen nach x und y sind ja gleich, nehmen wir
> jetzt beispielshalber die Ableitung nach x.  Hier muss man
> die Produktregel anwenden, den ersten Teil habe ich ja auch
> richtig (den ersten Term abgeleitet mal den mit arctan
> usw.).
> Mir geht es jetzt eigentlich nur um den Teil, wo man arctan
> ableitet und - nach der Produktregel eben- den "vorderen
> Teil" übernimmt.
> In der Lösung steht da dafür:
>  f'= [mm]x(1+x^2+y^2)^{1/2 }(3arctan (\wurzel{(x^2+y^2)}[/mm] +
> [mm]1/\wurzel{(x^2+y^2)}[/mm]
>  
> Ich weiß nicht, wie man auf diesen zweiten Ableitungsteil
> kommt [mm](x(1+x^2+y^2)(^{1/2})(1/\wurzel{(x^2+y^2)}.[/mm]
>  Ich habe dafür raus: [mm]((1+x^2+y^2)^{3/2}) (1/1+x^2+y^2)[/mm]


>  
> Weil ich dachte, dass die Ableitung von arctan(x) ja
> [mm]1/1+x^2[/mm] ist?


Das ist auch richtig.

Hier haben wir allerdings [mm]\arctan\left(g\left(x,y\right)\right)[/mm]

Deshalb werden die partiellen Ableitungen mit Hilfe der Kettenregel gebildet:

[mm]\bruch{\partial}{\partial x}\left(\arctan\left(g\left(x,y\right)\right)\right)=\bruch{1}{1+g^{2}\left(x,y\right)}*\bruch{\partial g\left(x,y\right)}{\partial x}[/mm]


>  Erkennt vielleicht jemand, wo mein Fehler liegt? Freue
> mich über jede Hilfe, danke!
>  
>  

Gruß
MathePower

Bezug
                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Sa 26.07.2008
Autor: sara_99

Hallo,
danke für deine Antwort, ich habe mich im ersten Beitrag bei meiner Ableitung vertippt und später noch einen Beitrag geschrieben. Wäre die Ableitung dann richtig? Und würde meine Ableitung dann der Lösung entsprechen? (Mit Umformen tue ich mich manchmal ein bisschen schwer...)

Bezug
                        
Bezug
Partielle Ableitung: nicht richtig
Status: (Antwort) fertig Status 
Datum: 18:06 Sa 26.07.2008
Autor: Loddar

Hallo Sara!


In Deiner Ableitung fehlt noch die innere Ableitung gemäß MBKettenregel für den Term [mm] $\red{\wurzel{x^2+y^2}}$ [/mm] .
Es fehlt also der Term [mm] $\bruch{1}{2*\wurzel{x^2+y^2}}$ [/mm] .


Gruß
Loddar


Bezug
                                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Sa 26.07.2008
Autor: sara_99

Sorry, aber ich verstehe es leider nicht so ganz.
Wir müssen die Abeleitung von arctan(g(x,y)) bilden. Das g(x,y) ist hier: [mm] g(x)=\wurzel{x^2+y^2}. g^2 [/mm] ist damit [mm] (x^2+y^2). [/mm] Die Ableitung von g nach x ist: 2x.

Dann würde ich für die Ableitung sagen:
[mm] (2x/1+x^2+y^2) [/mm]


Warum käme da denn noch dieser zusätzliche Term hinzu?





Bezug
                                        
Bezug
Partielle Ableitung: Wurzel ableiten
Status: (Antwort) fertig Status 
Datum: 18:23 Sa 26.07.2008
Autor: Loddar

Hallo sara!


Das ist der Term, wenn Du die Wurzel [mm] $\wurzel{x^2+y^2}$ [/mm] ableitest.

Denn es gilt: [mm] $\left( \ \wurzel{z} \ \right)' [/mm] \ = \ [mm] \bruch{1}{2*\wurzel{z}}$ [/mm] .


Gruß
Loddar


Bezug
                                                
Bezug
Partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Sa 26.07.2008
Autor: sara_99

Ahhhhh, es macht Klick! Ich habe die ganze Zeit diese Wurzel verdrängt, vielen Dank für deine Hilfe! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]