www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitung
Partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Idee oder Tipp
Status: (Frage) beantwortet Status 
Datum: 19:35 Mi 25.06.2008
Autor: rattenjaguar87

Aufgabe
Für z(x,y) = y/f(x²-y²) , wobei f eine differenzierbare Funktion sei, zeige man :

[mm] \bruch{1}{x} * \bruch{\partial z}{\partial x} + \bruch{1}{z} * \bruch{\partial z}{\partial y} = \bruch{z}{y²} [/mm]

Hallo, da ich hier neu im Forum bin, möchte ich Euch fragen, ob wer eine Idee hat, dieses Beispiel zu lösen?

Habe einfach mal differenziert, nur komme ich auf die Form
[mm] \bruch{-2 *y}{f²(x²-y²) } + \bruch{1}{f(x²-y²) } + \bruch{2 *y²* f'(x²-y²)}{f²(x²-y²) } [/mm]

Auch habe ich es mit der Kettenregel versucht, indem ich u = x²-y² setze, doch komme ich weiter. Irgendwo habe ich einen Denkfehler :(

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hoffe Ihr könnt mir helfen!
Dank im Voraus

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Mi 25.06.2008
Autor: steppenhahn

Also das ganze stimmt nur, wenn dasteht:

[mm]\bruch{1}{x} * \bruch{\partial z}{\partial x} + \bruch{1}{\red{y}} * \bruch{\partial z}{\partial y} = \bruch{z}{y²} [/mm]

Dann stimmt auch alles und man kommt auf einen leichten Ausdruck. Auf der linken Seite "verschwinden" auch alle Ableitungen. Ich habe berechnet:

[mm] \bruch{\partial z}{\partial x} [/mm] = [mm] \bruch{-2xy*f'\left(x^{2}-y^{2}\right)}{f\left(x^{2}-x^{2}\right)^{2}} [/mm]

und

[mm] \bruch{\partial z}{\partial y} [/mm] = [mm] \bruch{1}{f\left(x^{2}-y^{2}\right)} [/mm] + [mm] \bruch{2*y^{2}*f'\left(x^{2}-y^{2}\right)}{f\left(x^{2}-y^{2}\right)^{2}} [/mm]

Du hast da in deinem linken Term anscheinend eine Ableitung vergessen. Dann klappt alles! (Denk immer an die Kettenregel :-) )

Bezug
                
Bezug
Partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 Mi 25.06.2008
Autor: rattenjaguar87

Ach mein Gott irgendwie habe ich da den Ausdruck vergessen :P
Danke vielmals für deine Hilfe und schöne Grüße aus Österreich!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]