www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Partielle Ableitung
Partielle Ableitung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Mi 25.06.2008
Autor: xxxx

Aufgabe
Bestimme den Gradient und die partielle Ableitung bis zur zweiten Ordnung von
f(x,y) = [mm] e^{xy} [/mm] + [mm] x^2 [/mm] - [mm] y^2 [/mm]

Und zwar hänge ich nur bei einem kleinen Tel fest und zwar wenn es darum geht
[mm] f_{xy} [/mm] zu bestimmen. Bis jetzt habe ich

[mm] f_{x} [/mm] = [mm] ye^{xy} [/mm] + 2x
[mm] f_{y} [/mm] = [mm] xe^{xy} [/mm] - 2y
grad f = ( [mm] ye^{xy} [/mm] + 2x, [mm] xe^{xy} [/mm] - 2y)

[mm] f_{xx} [/mm] = [mm] y^2 [/mm] * [mm] e^{xy} [/mm] + 2
[mm] f_{yy} [/mm] = [mm] x^2 [/mm] * [mm] e^{xy} [/mm] - 2

und nun weiss ich nicht so genau, wie ich auf

[mm] f_{xy} [/mm] komme. Ich dachte das Ergebnis wäre xy * [mm] e^{xy} [/mm] aber ich glaub das ist falsch....

wäre echt super lieb wenn mir jemand helfen könnte

lg xxxx

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Mi 25.06.2008
Autor: M.Rex

Hallo

Du willst

[mm] f_{x}=ye^{xy}+2x [/mm]

Nach y ableiten.

Korrekterweise hast du erkannt, dass das 2x "wegfällt", für

[mm] ye^{xy} [/mm] brauchst du aber die Produktregel:

Also:

[mm] g(x)=\underbrace{y}_{u}*\underbrace{e^{xy}}_{v} [/mm]
[mm] g'(x)=\underbrace{1}_{u'}*\underbrace{e^{xy}}_{v}+\underbrace{y}_{u}*\underbrace{x*e^{xy}}_{v'}=(1+xy)e^{xy} [/mm]

Marius

Bezug
                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Mi 25.06.2008
Autor: xxxx

Mir ist grad noch was eingefallen, ich weiss nicht ob das geht, weil ich davon noch nichts in meiner VL gehört habe, aber es gibt doch sicher auch den zweiten Gradient. Wäre der dann in diesem Fall

[mm] grad_2 [/mm] f [mm] (y^2 [/mm] * [mm] e^{xy} [/mm] + 2, [mm] x^2 [/mm] * e {xy} - 2)

oder muss ich da dann noch mein [mm] f_{xy} [/mm] mit reinziehen....

lg xxxx

Bezug
                        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mi 25.06.2008
Autor: XPatrickX

Hi,

für die zweiten Ableitungen gibt es die []Hesse-Matrix.

Für eine Funktion f: [mm] \IR^2 \to \IR [/mm] sieht diese dann so aus: [mm] \pmat{ f_{xx} & f_{xy} \\ f_{yx} & f_{yy} } [/mm]


Grüße Patrick


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]